Prediction of external corrosion rate in Oil and Gas platforms using ensemble learning

a Maintenance 4.0 approach

Authors

  • Fernanda Ramos Elmas Pontifical Catholic University of Rio de Janeiro (PUC-Rio) / State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil. https://orcid.org/0000-0002-8705-1198
  • Marina Polonia Rios Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Gávea, Rio de Janeiro, RJ, Brazil. https://orcid.org/0000-0002-0021-8486
  • Eduardo Rocha de Almeida Lima State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
  • Rodrigo Goyannes Gusmão caiado Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Gávea, Rio de Janeiro, RJ, Brazil. https://orcid.org/0000-0002-3290-8385
  • Renan Silva Santos Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Gávea, Rio de Janeiro, RJ, Brazil. https://orcid.org/0000-0001-6656-9783

DOI:

https://doi.org/10.14488/BJOPM.1952.2023

Keywords:

Corrosion, Maintenance Plan, Random Forest Regressor, Corrosion rate

Abstract

Goal: This study aims to use artificial intelligence, specifically a random forest model, to predict the annual corrosion rate on FPSO offshore platforms in the oil and gas industry. Corrosion is a significant cause of equipment failure, leading to costly replacements. The random forest model, a machine learning technique, was developed using climatic and other relevant data to forecast corrosion trends based on selected variables.

Design/methodology/approach: The methodology involved four steps: identifying influential factors affecting corrosion, selecting factors based on reliability and accessibility of measurements, applying the machine learning model to predict annual corrosion progression, and comparing the random forest model with other ML models.

Results - The results showed that the random forest regression model successfully predicted corrosion rates, indicating an average yearly increase of 2.43% on the analyzed platforms. The main factors influencing this increase were wind speed, percentage of measured corrosion, and platform operating time. Regions with higher incidence of these factors are likely to experience higher corrosion rates, necessitating more frequent maintenance.

Limitations of the investigation - The research sample consisted exclusively of 4 platforms located in the offshore region of Rio de Janeiro, Brazil. Thus, the results obtained must be interpreted as representative of these platforms and respective climate conditions.

Practical implications – The use of data science tools to improve corrosion management allows managers to have knowledge of which areas has a greater or lesser tendency to corrode, helping to prioritize maintenance activities over time.

Originality/value - This study aims to fill gaps regarding the use of random forest techniques for regression focused on predicting the rate of increase in corrosion. It offers a novel approach to assist decision-making in maintenance planning, providing insights into influential corrosion factors and facilitating more effective painting plans to preserve industrial unit integrity.

Downloads

Download data is not yet available.

References

American Petroleum Institute (2016), “API 579-1”, Fitness for Service.

American Petroleum Institute (2009)”, API RP 580: Risk-based inspection”.

Bento, M.P.; Ramalho, G.L.B.; Medeiros, F.N.S.; Medeiros, L.C.L. and Ribeiro, E.S. (2009), “Automatic identification of corrosion damage using image processing techniques“, in: Rio Pipeline Conference. Brazilian Petroleum, Gas and Biofuels Institute [IBP], Rio de Janeiro.

Breiman, L. (2001), “Random Forests”, Mach Learn 45, pp. 5–32. Doi: https://doi.org/10.1023/A:1010933404324

British Standards Institution (2012), “BS EN ISO 9223:2012: Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation”.

Britton, C.F. (1990), “Corrosion monitoring and inspection, in: Microbiology in Civil Engineering”, CRC Press, pp. 382–390.

Buskirk, T.D. (2018), “Surveying the Forests and Sampling the Trees: An overview of Classification and Regression Trees and Random Forests with applications in Survey Research”, Surv Pract 11, pp. 1–13. Doi: https://doi.org/10.29115/SP-2018-0003

Cai, Y.K.; Zhao, Y.; Zhang, Z.K., Ma; X.B. and Cheng, B. (2018), “Atmospheric and Marine Corrosion: Influential Environmental Factors and Models”, in: Proceedings of the International Workshop on Environmental Management, Science and Engineering. SCITEPRESS - Science and Technology Publications, pp. 178–186. Doi: https://doi.org/10.5220/0007558601780186

Caiado, R.G.G.; Lima, G.B.A. and Quelhas, O.L.G. (2015), “Aspectos da aplicação da manutenção centrada em confiabilidade”, in: xi congresso nacional de excelência em gestão, Niterói.

Caiado, R.G.G.; Scavarda, L.F.; Azevedo, B.D.; Nascimento, D.L.M. and Quelhas, O.L.G. (2022), “ Challenges and Benefits of Sustainable Industry 4.0 for Operations and Supply Chain Management—A Framework Headed toward the 2030 Agenda”, Sustainability Vol. 14, pp. 830. Doi: https://doi.org/10.3390/su14020830

Chen, P.-H.; Yang, Y.-C.; Chang, L.-M. (2010), “Illumination adjustment for bridge coating images using BEMD-Morphology Approach (BMA)”, Autom Constr, Vol. 19, pp. 475–484. Doi: https://doi.org/10.1016/j.autcon.2009.12.017

Cho, D.Y. (2020), “Development of the Paint Amount Estimating Software for Pipe Supports of Ship and Offshore Structures Using 3D Cad Models”, International Journal of Advanced Research in Engineering and Technology (IJARET), Vol. 11, pp. 334–345.

Cruz, M.M.; Caiado, R.G.G.; Santos, R.S. (2022), “Industrial Packaging Performance Indicator Using a Group Multicriteria Approach: An Automaker Reverse Operations Case”, Logistics, Vol. 6, pp. 58. Doi: https://doi.org/10.3390/logistics6030058

Dawson, J.L. (2010), “Corrosion management overview”, in: Richardson, T.J.A. (Ed.), Shreir’s Corrosion. Elsevier Science, Durham, United Kingdom, pp. 3001–3039.

Dawson, J.L. and John, G., Oliver, K. (2010), “Management of corrosion in the oil and gas industry”, in: Richardson, T.J.A. (Ed.), Shreir’s Corrosion. Elsevier Science, Durham, United Kingdom, pp. 3230–3269.

Paula Vidal, G.H.; Caiado, R.G.G.; Scavarda, L.F.; Ivson, P. and Garza-Reyes, J.A. (2022a), “Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network”, Comput Ind Eng, Vol. 174, 108777. Doi: https://doi.org/10.1016/j.cie.2022.108777

de Paula Vidal, G.H.; Caiado, R.G.G.; Scavarda, L.F.; Santos, R.S. (2022b), “MRO Inventory Demand Forecast Using Support Vector Machine – A Case Study”, pp. 221–233. Doi: https://doi.org/10.1007/978-3-031-14763-0_18

Diao, Y.; Yan, L.; Gao, K. (2021), “Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features”, Mater Des, Vol. 198, 109326. Doi: https://doi.org/10.1016/j.matdes.2020.109326

El Naqa, I. and Murphy, M.J. (2015), “What Is Machine Learning?”, in: Machine Learning in Radiation Oncology. Springer International Publishing, Cham, pp. 3–11. Doi: https://doi.org/10.1007/978-3-319-18305-3_1

Fayyad, U.; Piatetsky-Shapiro, G. and Smyth, P. (1996), “From Data Mining to Knowledge Discovery in Databases”, AI Mag, Vol. 17, pp. 37. Doi: https://doi.org/10.1609/aimag.v17i3.1230

Gupta, B.; Rawat, A.; Jain, A.; Arora, A. and Dhami, N. (2017), “Analysis of Various Decision Tree Algorithms for Classification in Data Mining”, Int J Comput Appl, Vol. 163, pp. 15–19. Doi: https://doi.org/10.5120/ijca2017913660

He, S.; Wu, J.; Wang, D. and He, X., (2022), “Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest”, Chemosphere, Vol. 290, 133388. Doi: https://doi.org/10.1016/j.chemosphere.2021.133388

Kaiser, B.C.S.; Santos, R.S.; Caiado, R.G.G.; Scavarda, L.F. and Netto, P.I. (2022), “Efficiency Assessment of Public Transport Vehicles Using Machine Learning and Non-parametric Models”, pp. 207–220. Doi: https://doi.org/10.1007/978-3-031-14763-0_17

Koch, G.H.; Brongers, M.P.H.; Thompson, N.G.; Virmani, Y.P. and Payer, J.H. (2002), “Corrosion costs and preventive strategies in the US”. Houston.

Liaw, A. and Wiener, M. (2002), “Classification and Regression by randomForest”, R News 2, pp. 18–22.

Lima, B.F. and Neto, J.V.; Santos, R.S. and Caiado, R.G.G. (2023), “A Socio-Technical Framework for Lean Project Management Implementation towards Sustainable Value in the Digital Transformation Context. Sustainability”, Vol. 15, 1756. Doi: https://doi.org/10.3390/su15031756

Lv, Y.; Wang, Jun-wei; Wang, Julian; Xiong, C.; Zou, L.; Li, L. and Li, D. (2020), “Steel corrosion prediction based on support vector machines”, Chaos Solitons Fractals, Vol. 136, 109807. Doi: https://doi.org/10.1016/j.chaos.2020.109807

Lyon, S.B. (20100, “Corrosion of carbon and low alloy steels”, in: Richardson, T.J.A. (Ed.), Shreir’s Corrosion. Elsevier Science, Durham, United Kingdom, pp. 1693–1736.

Macha, E.N.; Dante, J.F. and DeCarlo, E. (2019), “Development of a Methodology to Predict Atmospheric Corrosion Severity Using Corrosion Sensor Technologies”, in: CORROSION 2019. NACE International, Nashville.

Mendez, G.; Buskirk, T.D.; Lohr, S. and Haag, S. (2008), “Factors Associated With Persistence in Science and Engineering Majors: An Exploratory Study Using Classification Trees and Random Forests”, Journal of Engineering Education, Vol. 97, pp. 57–70. Doi: https://doi.org/10.1002/j.2168-9830.2008.tb00954.x

Mishra, M.; Keshavarzzadeh, V. and Noshadravan, A. (2019), “Reliability-based lifecycle management for corroding pipelines”, Structural Safety, Vol. 76, pp. 1–14. Doi: https://doi.org/10.1016/j.strusafe.2018.06.007

Mobley, R.K. (2002), “An introduction to predictive maintenance”. BUTTERWORTH-HEINEMANN LTD.

Mokarian, P.; Bakhshayeshi, I.; Taghikhah, F.; Boroumand, Y.; Erfani, E. and Razmjou, A. (2022), “The advanced design of bioleaching process for metal recovery: A machine learning approach”, Sep Purif Technol, Vol. 291, 120919. Doi: https://doi.org/10.1016/j.seppur.2022.120919

Muniz, M.V.P.; Lima, G.B.A.; Caiado, R.G.G. and Quelhas, O.L.G. (2018), “Bow tie to improve risk management of natural gas pipelines”, Process Safety Progress, Vol. 37, pp. 169–175. Doi: https://doi.org/10.1002/prs.11901

Nascimento, D.L. de M.; Goncalvez Quelhas, O.L.; Gusmão Caiado, R.G.; Tortorella, G.L.; Garza-Reyes, J.A. and Rocha-Lona, L. (2019), “A lean six sigma framework for continuous and incremental improvement in the oil and gas sector”, International Journal of Lean Six Sigma, No. 11, pp. 577–595. Doi: https://doi.org/10.1108/IJLSS-02-2019-0011

Nor Asma, R.B.A.; Yuli, P.A. and Mokhtar, C.I. (2011), “Study on the Effect of Surface Finish on Corrosion of Carbon Steel in CO2 Environment”, Journal of Applied Sciences, No. 11, pp. 2053–2057. Doi: https://doi.org/10.3923/jas.2011.2053.2057

Orrù, P.F.; Zoccheddu, A.; Sassu, L., Mattia, C.; Cozza, R. and Arena, S. (2020), “Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry”, Sustainability, Vol. 12, 4776. Doi: https://doi.org/10.3390/su12114776

Parameswari, A.; Kumar, K.V. and Gopinath, S. (2022), “Thermal analysis of Alzheimer’s disease prediction using random forest classification model”, Mater Today Proc, Vol. 66, pp. 815–821. Doi: https://doi.org/10.1016/j.matpr.2022.04.357

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M. and Duchesnay, É. (2012), “Scikit-learn: Machine Learning in Python”, The Journal of Machine Learning Research, Vol. 12, pp. 2825–2830.

Rajendra, P.; Girisha, A. and Gunavardhana Naidu, T. (2022), “Advancement of machine learning in materials science”, Mater Today Proc 62, pp. 5503–5507. Doi: https://doi.org/10.1016/j.matpr.2022.04.238

Sircar, A.; Yadav, K.; Rayavarapu, K.; Bist, N. and Oza, H. (2021), “Application of machine learning and artificial intelligence in oil and gas industry”, Petroleum Research, Vol. 6, pp. 379–391. Doi: https://doi.org/10.1016/j.ptlrs.2021.05.009

St. Clair, A.M.; Sinha, S. (2014), “Development of a Standard Data Structure for Predicting the Remaining Physical Life and Consequence of Failure of Water Pipes”, Journal of Performance of Constructed Facilities, Vol. 28, pp. 191–203. Doi: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000384

Strobl, C.; Boulesteix, A.-L.; Zeileis, A. and Hothorn, T. (2007), “Bias in random forest variable importance measures: Illustrations, sources and a solution|”, BMC Bioinformatics, Vol. 8, No. 25. Doi: https://doi.org/10.1186/1471-2105-8-25

Tang, Y.; Wan, Y.; Wang, Z.; Zhang, C.; Han, J.; Hu, C. and Tang, C. (2022), “Machine learning and Python assisted design and verification of Fe–based amorphous/nanocrystalline alloy”, Mater Des, Vol. 219, 110726. Doi: https://doi.org/10.1016/j.matdes.2022.110726

Tecgraf Institute/PUC-Rio (2021). “RELATÓRIO TÉCNICO 02 – Projeto Ambiente 3D para Manutenção, Integridade e Monitoramento de Instalações de Superfície”. Rio de Janeiro.

Van Rossum, G. and Drake, F.L. (2009), “Python 3 Reference Manual”, CreateSpace, Scotts Valley, CA.

Vieira, S.; Lopez Pinaya, W.H. and Mechelli, A. (2020), “Introduction to machine learning”, in: Machine Learning. Elsevier, pp. 1–20. Doi: https://doi.org/10.1016/B978-0-12-815739-8.00001-8

Wei, X.; Fu, D.; Chen, M.; Wu, W.; Wu, D. and Liu, C. (2021), “Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment Alloying Elements”, J Mater Sci Technol, Vol. 64, pp. 222–232. Doi: https://doi.org/10.1016/j.jmst.2020.01.040

Wu, W.; Cheng, G.; Hu, H.; Zhou, Q. (2013), “Risk analysis of corrosion failures of equipment in refining and petrochemical plants based on fuzzy set theory”, Eng Fail Anal, Vol. 32, pp. 23–34. Doi: https://doi.org/10.1016/j.engfailanal.2013.03.003

Zhao, H.; Gunardi, W.; Liu, Y.; Kiew, C.; Teng, T.-H. and Yang, X.B. (2022), “Prediction of Traffic Incident Duration Using Clustering-Based Ensemble Learning Method”, J Transp Eng A Syst, Vol. 148. Doi: https://doi.org/10.1061/JTEPBS.0000688

Zhi, Y.; Jin, Z.; Lu, L.; Yang, T.; Zhou, D.; Pei, Z.; Wu, D.; Fu, D.; Zhang, D. and Li, X. (2021), “Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model”, Corros Sci, Vol. 178, 109084. Doi: https://doi.org/10.1016/j.corsci.2020.109084

Downloads

Published

2023-09-22

How to Cite

Elmas, F. R., Rios, M. P., Lima, E. R. de A., caiado, R. G. G., & Santos, R. S. (2023). Prediction of external corrosion rate in Oil and Gas platforms using ensemble learning: a Maintenance 4.0 approach. Brazilian Journal of Operations & Production Management, 20(3), 1952. https://doi.org/10.14488/BJOPM.1952.2023

Issue

Section

Research paper

Most read articles by the same author(s)