Solving a Periodic Capacitated Vehicle Routing Problem using Simulated Annealing Algorithm for a Manufacturing Company
DOI:
https://doi.org/10.14488/BJOPM.2020.011Keywords:
Capacitated vehicle routing problem, Simulated annealing algorithm, Julia programming languageAbstract
Goal: This paper aims to implement a periodic capacitated vehicle routing problem with simulated annealing algorithm using a real-life industrial distribution problem and to recommend it to industry practitioners. The authors aimed to achieve high-performance solutions by coding a manually solved industrial problem and thus solving a real-life vehicle routing problem using Julia language and simulated annealing algorithm.
Design / Methodology / Approach: The vehicle routing problem (VRP) that is a widely studied combinatorial optimization and integer programming problem, aims to design optimal tours for a fleet of vehicles serving a given set of customers at different locations. The simulated annealing algorithm is used for periodic capacitated vehicle routing problem. Julia is a state-of-art scientific computation language. Therefore, a Julia programming language toolbox developed for logistic optimization is used.
Results: The results are compared to savings algorithms from Matlab in terms of solution quality and time. It is seen that the simulated annealing algorithm with Julia gives better solution quality in reasonable simulation time compared to the constructive savings algorithm.
Limitations of the investigation: The data of the company is obtained from 12 periods with a history of four years. About the capacitated vehicle routing problem, the homogenous fleet with 3000 meters/vehicle is used. Then, the simulated annealing design parameters are chosen rule-of-thumb. Therefore, better performance can be obtained by optimizing the simulated annealing parameters.
Practical implications: In this study, a furniture roving parts manufacturing company that have 30 customers in Denizli, an industrial city in the west part of Turkey, is investigated. Before the scheduling implementation with Julia, the company has no effective and efficient planning as they have been using spreadsheet programs for vehicle scheduling solutions. In this study, the solutions with Julia are used in practice for the distribution with higher utilization rate and minimum number of vehicles. The simulated annealing and savings algorithms are compared in terms of solution time and performance. The savings algorithm has produced better solution time, the simulated annealing approach has minimum total distance objective value, minimum number of required vehicles, and maximum vehicle utilization rate for the whole model. Thus, this paper can contribute to small scale business management in the sense of presenting a digitalization solution for the vehicle scheduling solution. Also, Julia application of simulated annealing for vehicle scheduling is demonstrated that can help both academicians and practitioners in organizations, mainly in logistics and distribution problems.
Originality / Value: The main contribution of this study is a new solution method to capacitated vehicle routing problems for a real-life industrial problem using the advantages of the high-level computing language Julia and a meta-heuristic algorithm, the simulated annealing method.
Keywords: Capacitated vehicle routing problem, Simulated annealing algorithm, Julia programming language.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors must have a written permission from any third-party materials used in the article, such as figures and graphics. The permission must explicitly allow authors to use the materials. The permission should be submitted with the article, as a supplementary file.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after BJO&PM publishes it (See The Effect of Open Access).