Optimal humanitarian warehouses location considering vulnerability previous condition

Authors

  • Wendy Cerlubia Chipana-Surquislla Pontifical Catholic University of Peru, Lima, Peru.
  • Christian Cornejo-Sanchez Pontifical Catholic University of Peru, Lima, Peru.
  • Jorge Vargas-Florez Pontifical Catholic University of Peru, Lima, Peru.

DOI:

https://doi.org/10.14488/BJOPM.2022.003

Keywords:

Humanitarian logistics, Earthquakes, Disaster, Vulnerability, Location problem

Abstract

Goal: This study tackles on location problem, analyzing the urban shape base on vulnerability previous conditions in affected areas.

Design / Methodology / Approach: A numerical analysis is performed using an integer programming model to find optimal preposition warehouses location.

Results: The minimum cost is reached when the needs of all the people affected by the natural disaster are met. Excess construction of warehouses implies additional maintenance and administration expenses, while lack of construction of warehouses implies expenses originated by unsatisfied demand.

Limitations of the investigation: Among the main limitations found in this study were the lack of updated data and few studies related to natural disaster prevention in the case study.

Practical implications: Organizations should implement the recommendations given by the new model. This is because the model minimizes the cost, since the damage caused by a natural disaster is much more expensive than preventing it.

Originality / Value: The novelty in this study is the creation of a punishment factor based on the level of vulnerability of the routes used in transportation. This is to simulate the impact the deterioration of routes has on the response time of sending aid supplies.

Downloads

Download data is not yet available.

References

Adger, W.N. (1999), "Social vulnerability to climate change and extremes in coastal Vietnam", World Development, Vol. 27, No. 2, pp. 249-69.

Afshar, A. and Haghani, A. (2012), "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations", Socio-Economic Planning Sciences, Vol. 46, No. 4, pp. 327-38.

Alizadeh, R. and Nishi, T. (2020), "Hybrid set covering and dynamic modular covering location problem: application to an emergency humanitarian logistics problem", Applied Sciences, Vol. 10, No. 20, pp. 1-23.

Bambarén, C. and Alatrista, M. (2009), "Estimación del impacto socioeconómico del terremoto en Pisco en el sector salud peruano", Revista Médica Herediana, Vol. 20, No. 2, pp. 177-84.

Besolin, P., Gonçalves, V., Andrade, A. et al. (2018), "A bibliometric analysis regarding humanitarian operations and critical situations", Revista GEINTEC - Gestão, Inovação e Tecnologias, Vol. 8, No. 3, pp. 4508-21.

Boonmee, C., Arimura, M. and Asada, T. (2017), "Facility location optimization model for emergency humanitarian logistics", International Journal of Disaster Risk Reduction, Vol. 24, pp. 485-98.

Brooks, N. (2003), Vulnerability, Risk and Adaptation: a Conceptual Framework, Tyndall Center, United Kingdom.

Burton, I., Huq, S., Lim, B. et al. (2002), "From impacts assessment to adaptation priorities: the shaping of adaptation policy", Climate Policy, Vol. 2, No. 2-3, pp. 145-59.

Cardona, O.D. (2003), La Necesidad de Repensar de Manera Holística los Conceptos de Vulnerabilidad y Riesgo “Una Crítica y una Revisión Necesaria para la Gestión”, Centro de Estudios sobre Desastres y Riesgo, Panamá.

Carlsen, H., Lempert, R., Wikman-Svahn, P. et al. (2016), "Choosing small sets of policy-relevant scenarios by combining vulnerability and diversity approaches", Environmental Modelling & Software, Vol. 84, pp. 155-64.

Caunhye, A., Nie, X. and Pokharel, S. (2012), "Optimization models in emergency logistics: a literature review", Socio-Economic Planning Sciences, Vol. 46, No. 1, pp. 4-13.

Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (2014), Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales, 2a ed., CENEPRED, Lima.

Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (2017), Manual para la Evaluación de Riesgos por Sismos, CENEPRED, Lima.

Flórez, N. (2018), "Desarrollo de la logística humanitaria: una revisión de la literatura", Science of Human Action, Vol. 3, No. 2, pp. 317-339.

Fosso Wamba, S. (2020), “Humanitarian supply chain: a bibliometric analysis and future research directions”, Annals of Operations Research. In press.

Huai, J. (2016), "Integration and typologies of vulnerability to climate change: a case study from Australian wheat sheep zones", Scientific Reports, Vol. 6, No. 1, pp. 6.

Huang, R., Kim, S. and Menezes, S. (2010), "Facility location for large-scale emergencies", Annals of Operations Research, Vol. 181, No. 1, pp. 271-86.

Jia, H., Ordóñez, F. and Dessouky, M. (2007), "A modeling framework for facility location of medical services for large-scale emergencies", IIE Transactions, Vol. 399, No. 1, pp. 41-55.

Kumalasari, R.H., Koestoer, R. and Hasibuan, H. (2019), “Disaster risk mitigation of landslide for sustainability of geothermal production in Bandung Regency, West Java Province, Indonesia", IOP Conference Series: Earth and Environmental Science, Vol. 256, 012020.

Kusumastuti, R.D., Wibowo, S. and Insanita, R. (2013), “Modeling facility locations for relief logistics in Indonesia", in Zeimpekis, V., Ichoua, S. and Minis, I. (Eds.), Humanitarian and Relief Logistics, Springer, New York, pp. 183-205.

Luers, A., Lobell, D., Sklar, L. et al. (2003), "A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley”, Mexico", Global Environmental Change, Vol. 13, No. 4, pp. 255-67.

Maharjan, R. and Hanaoka, S. (2017), "Warehouse location determination for humanitarian relief distribution in Nepal", Transportation Research Procedia, Vol. 25, pp. 25.

Marcelin, J.M., Horner, M., Ozguven, E. et al. (2016), "How does accessibility to post-disaster relief compare between the aging and the general population? A spatial network optimization analysis of hurricane relief facility locations", International Journal of Disaster Risk Reduction, Vol. 15, pp. 61-72.

McCall, V. (2004), Designing and Prepositioning Humanitarian Assistance Packup Kits (HA PUKS) to Support Pacific Fleet Emergency Relief Operations, Master’s Thesis, Naval Posgraduate School, USA.

Instituto Nacional de Defensa Civil (2009), Lecciones Aprendidas del Sur-Sismo de Pisco 15 de Agosto 2007, INDECI, Lima.

Özdamar, L., Ekinci, E. and Küçükyazici, B. (2006), "Emergency logistics planning in natural disasters", Annals of Operations Research, Vol. 129, No. 1-4, pp. 217-45.

Prieto, M.B. (2016), “Vulnerabilidad sociodemográfica en el aglomerado urbano de Bahía Blanca-Argentina”, available at: http://www.abep.org.br/~abeporgb/publicacoes/index.php/anai s/article/viewFile/1817/1776 (accessed 3 March 2022).

Serpa V. (2014), Optimización y Localización de Almacenes de Abastecimiento para la Atención de un Terremoto de Gran Magnitud en Lima Metropolitana y Callao, Tesis de Grado, Pontificia Universidad Católica del Perú,

San Miguel, available at: http://hdl.handle.net/20.500.12404/5352 (accessed 3 March 2022).

Sheu, J.-B., Chen, Y.-H. and Lan, L. (2005), "A novel model for quick response to disaster relief distribution", Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 2454-62.

Sugiarti, A., Meilianda, E. and Fatimah, E. (2019), “An overview of the down-scaling values of physical and social vulnerability parameters for tsunami disaster at the city level: a case study of Banda Aceh”, IOP Conference Series: Earth and Environmental Science, Vol. 273, 012030.

Vargas, J. (2002), Políticas Públicas para la Reducción de la Vulnerabilidad Frente a los Desastres Naturales y Socio-Naturales, Serie Medio Ambiente y Desarrollo, No. 50, CEPAL, Bogotá.

Vargas, J., Lauras, M., Okongwu, U., Dupont, L. (2015), “A decision support system for robust humanitarian facility location”, Engineering Applications of Artificial Intelligence, Vol. 47, pp. 23-33.

Vargas-Florez, J., Lauras, M. and Comes, T. (2021), “Designing Valid humanitarian logistics scenario sets: application to recurrent peruvian floods and earthquakes", in Taghipour, A. (Ed.), Demand Forecasting and Order Planning in Supply Chains and Humanitarian Logistics, IGI Global, Hershey, pp. 66-88.

Xi, M., Ye, F., Yao, Z. et al. (2013), "A modified pp-median model for the emergency facilities location problem and its variable neighbourhood search-based algorithm", Journal of Applied Mathematics, Vol. 2013, pp. 1-10.

Ye, F., Zhao, Q., Xi, M. et al. (2015), "Chinese national emergency warehouse location research based on VNS algorithm", Electronic Notes in Discrete Mathematics, Vol. 17, pp. 61-8.

Yodmani, S. (2001), "Disaster risk management and vulnerability reduction: protecting the poor", in The Asia and Pacific Forum on Poverty, Asian Development Bank, Philippines.

Downloads

Published

2022-04-14

How to Cite

Chipana-Surquislla, W. C., Cornejo-Sanchez, C., & Vargas-Florez , J. (2022). Optimal humanitarian warehouses location considering vulnerability previous condition. Brazilian Journal of Operations & Production Management, 19(2), 1–9. https://doi.org/10.14488/BJOPM.2022.003

Issue

Section

Research paper

Most read articles by the same author(s)