
Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

63

A Grasp+Vnd Algorithm for a Class of Job Scheduling
Problem in Parallel Machines

Dalessandro Soares Viannaa

aFluminense Federal University (UFF), Rio das Ostras, Brazil

Sandra Regina Coelhob

bCandido Mendes University (UCAM), Campo, Brazil

Marcilene de Fátima Dianin Viannac

cFluminense Federal University (UFF), Campos, Brazil

Abstract
Petróleo Brasileiro S/A (Petrobras) is the biggest Brazilian company in

energy business. It acts in exploration, production, refinement, commercialization
and transport of petroleum by products in Brazil and other countries. Most of the
petroleum production is concentrated in the Campos basin, where the company port
(port of Imbetiba – Macaé/RJ) is located. All the oil rigs supply is done using this port.
Researches made at the port of Imbetiba show the need of optimizing, among others,
the problem of towboat scheduling. In this problem, the order of towboat attendance
must be decided and, according to the material that each one carry, the following
restrictions must be respected: each towboat has a subset of piers where it can be
attended; each one has a attendance priority; and each one has a minimal time where
it can be attended, that is, before this time it cannot be attended. This paper proposes a
GRASP algorithm for the problem of towboat scheduling, which utilizes the technique
VND as local search. Three neighborhood structures are used: Exchange, Interchange
and Relocation. Computational results show that the proposed algorithm is efficient
when compared with traditional GRASP algorithms.

Keywords: Job Scheduling Problem in Parallel Machines, GRASP, VND,
Combinatorial Optimization, Petrobras.

Introduction
Petróleo Brasileiro S/A (PETROBRAS) commenced its activities in the

20th century and it is nowadays the biggest Brazilian company in energy business.
It acts in exploration, production, refinement, commercialization and transportation
of petroleum by products in Brazil and other countries. The organizational structure
regulates the operation establishing four business areas: exploration & production,

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

64

supply, gas & energy and international, and two of support: financial and services,
besides the corporative units connected straightly to the president (PETROBRAS,
2008).

The company has 112 oil rigs, being 78 fixed and 34 floating, 16 refinery,
25,197 kilometers of ducts and 6,154 gas station spread on the national territory.
Among these ones, 631 are from their own (PETROBRAS, 2008).

Most of the petroleum production of the company is concentrated in
Campos basin, where is located the own port of the company (port of Imbetiba –
Macaé/RJ). Through this port it is done all the supply of the oil rigs of the basin.

Researches made at the port of Imbetiba show the need of optimizing,
among others, the problem of towboat scheduling. In this problem, the order of
attendance must be decided and, according to the material each towboat carries, the
following restrictions must be respected:

•	 Each towboat has a subset of piers that can attend it. This happens because
each pier is prepared to the embark / disembark of a set of materials;

•	 Each towboat has a priority of attendance. The priority is given according
to the urgency of the material, the type of the material (perishable or not),
or taking priority to the attendance to an oil rig that in that moment is with
a higher level of production, among other factors;

•	 Minimum time for attendance (release time), that represents the moment
that the oil rig is already at disposal.

The objective is to minimize the waiting time of the towboats in the port,
what can represent very high amounts for PETROBRAS and for the contracted
companies that use the port of Imbetiba.

This problem can be associated to the Job Scheduling Problem in Parallel
Machines – JSPPM (MENDES et al., 2002; ARROYO and RIBEIRO, 2004; ZOUBA,
BAPTISTE and REBAINE, 2009), where a set of jobs, each one with a execution
time, must be organized for execution in a set of identical machines, in a way that the
total time of execution should be minimized. In the studied problem, the jobs are the
towboats and the machines are the piers, that are not identical – each one prepared to
attend the demand of a subset of materials. Besides, the restriction of priority and of
release time must be considered. The existence of this set of restrictions is because the
port of Imbetiba is a private and small port, having own rules different from the ones
established in big ports. This fact turned impossible to compare the research made in
this paper with others already made for other ports.

This paper proposes a GRASP algorithm that uses the VND technique in
the local search phase. Three neighborhood structures are implemented: Exchange,
Interchange and Relocation. The proposed algorithm is compared to traditional
GRASP algorithms. Computational results show that the proposed algorithm is
more efficient than the other algorithms when the quality of the solution obtained is
compared and, also, when the computational times are compared.

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

65

The remaining of this paper is organized as following: in Section 2, the
JSPPM, the related literature and the class of JSPPM cited in this paper are presented.
The GRASP algorithm proposed, which uses VND technique in the local search
phase, is detailed in Section 3. In Section 4, the computational results are presented.
Finally, the conclusion and references are presented.

Job Scheduling Problem in Parallel Machines
According to Mendes et al. (2002), the JSPPM can be defined as following:

a set of n jobs must be organized in m identical parallel machines with the aim of
minimizing the makespan – enough time to the n jobs complete its execution. Each
machine has a dependent setup time, i.e., the machine changeover time is dependent
on which job is currently being processed on the machine.

In the literature related to JSPPM, it is found: a integer linear programming
model, proposed by Dearing and Henderson (1984), for loom assignment in a textile
weaving operation; an heuristic method, proposed by Sumichrast and Baker (1987),
based on the solution of a series of 0-1 integer subproblems that improves the results
of Dearing and Anderson (1984); tabu search heuristics are proposed by França et
al.(1996) and Çelik and Saricicek (2009); Arroyo and Ribeiro (2004) proposed a
genetic algorithm for the JSPPM with multiple objectives; a tabu search heuristic,
proposed by Mendes et al. (2002) for the JSPPM not preemptive; and a genetic
algorithm is proposed by Zouba, Baptiste and Rebaine (2009).

The class of problem related in this paper, JSPPM*, can be defined as
following: a group of n jobs must be organized in m machines not identical. The setup
time is independent, in other words, it is the same independent of whom was the job
that has just been executed. So, the setup times are not considered in this paper. Each
job has a subset of machines that can execute it, a minimum time for its attendance
(release time) and a priority.

Each job i has a priority pi. As bigger is the value of pi, more priority the
job i has. Each job i also has a release time rti. Being ati the moment when the job i
started effectively its attendance, the waiting time, tei, of the job i, can be calculated
as following: tei = ati – rti. The goal of the JSPPM* is to minimize the total waiting
time, considering the priority of each job. The total waiting time can be calculated as
following:

).(
11 ii

n

i ii
n

i i rtatptep −×=× ∑∑ ==

Grasp + Vnd Heuristic Proposed
GRASP – Greedy Randomized Adaptive Search Procedure – (FEO and

RESENDE, 1995; RESENDE and RIBEIRO, 2003) is a multi-start metaheuristic,
in which each iteration consists of two phases: construction and local search. The
construction phase builds a feasible solution using a greedy randomized algorithm,

1 1
()n n

i i i i ii i
p te p at rt

= =
× = × −∑ ∑

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

66

while the local search phase calculates a local optimum in the neighborhood of the
feasible solution. Both phases are repeated a pre-specified number of iterations and
the best overall solution is kept as the result.

In this paper is proposed an hybrid GRASP algorithm that uses the VND –
Variable Neighborhood Descent – (MLADENOVIC and HANSEN, 1997) technique
in the local search phase. The construction method is described in details in Subsection
3.1. In the local search phase is used the VND technique with three neighborhood
structures that will be commented in Subsection 3.2.

Constructive Method

This method is greedy according to the number of machines that can
execute a specific job. Jobs with a smaller number of machines that can execute them
will be selected first. The main goal of this strategy is to avoid that a job i waits for a
machine that is used by job j that could be attended by other machines that are idle.

In this way, initially, the jobs are sorted increasingly by the number of
machines that can attend them. When more than one job has the same quantity of
machines to attend it, the decision is given by the priority of the jobs (taking into
consideration the decreasing order of the priorities).

In order to construct an different initial solution at each iteration of the
GRASP algorithm, instead of always choosing the first job of the queue, it is chosen,
randomly, one among the first a jobs, where a is an input parameter of the algorithm.

To associate a job i with a machine mj, the best position must be chosen
considering all the available positions in the machine mj, in a way that the total waiting
time be the smallest possible. When a job can be executed by more than one machine,
it will be chosen the machine where the job does not cause waste of time or cause the
smallest possible waiting time.

Figure 1 shows the constructive algorithm, that receives as input parameter
the randomness intensity, a, and returns, as output, the solution s built. In line 1, the
list with all the jobs is ordered increasingly by the amount of machines that can attend
each job and by the priority. The loop in lines 2-16 guarantees that all the jobs will be
inserted in the solution s. In line 3, a job b is chosen randomly among the first a jobs
of the list. The loop in lines 5-13 chooses, in the machines that can attend the job b,
the best position to insert the job b. This insertion is done in line 14. In line 17, the
solution s is returned.

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

67

Procedure BuildSolution (a)

Input

 a – randomness intensity.

Output

 s – built solution.

Begin

01. Construct the list L with jobs not attended yet. Sort L increasingly by the amount
of machines that can attend each job. In case of equality, sort decreasingly by
the priority of the job;

02. For i 		 1 to n do

03. b 			 choose, randomly, one of the first a jobs of L;

04. best_cost 			 				;

05. For each machine mj that can attend the job b do

06. Let y be the best position in the machine mj to insert the job b, that is, the
position that causes the smallest waiting time;

07. cost_y 				cost of the insertion of job b in the position y of the machine mj;

08. If cost_y < best_cost then

09. best_pos 				y;

10. best_mac 				mj;

11. best_cost 				cost_y;

12. End-if

13. End-for

14. Insert the job b in the position best_pos of the machine best_mac of solution s.

 Remove b from L;

15. Calculate the new accumulated waiting time of the machine best_mac;

16. End-for

17. Return s;

End-BuildSolution
Figure 1 - Constructive algorithm.

 ∞











Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

68

Local Search Using VND

Figure 2 shows the pseudo-code of the VND algorithm developed that
uses three neighborhood structures: Exchange, Interchange and Relocation, that
will be described in details in Subsections 3.2.1, 3.2.2 and 3.2.3, respectively. This
algorithm receives as input parameter, besides the three neighborhood structures, a
feasible solution s0 to be refined. The first neighborhood structure to be analyzed is the
neighborhood N1 (line 2). The loop in lines 3-11 guarantees that all the neighborhoods
structures will be analyzed. If, after the application of the local search in the
neighborhood Nk, the found solution is better than the original, the search will restart
(line 7) with the neighborhood N1. Otherwise, the search will continue in the next
neighborhood (line 9). In line 12, the refined solution s is returned.

Exchange Neighborhood Structure

In this neighborhood structure, it is considered the exchange of jobs that
are in the attendance queue of the same machine. Figure 3 shows the pseudo-code of
the local search procedure (LS_Exchange) analyzing this neighborhood structure,
which receives as input parameter the solution s to be refined. The loop in lines 2-20
guarantees that the search will continue while exists a better neighbor than the current
solution s. The loop in lines 4-13 searches for the best exchange among jobs of the
same machine. If the best exchange takes to a better solution than the current one, this
exchange will be done in line 15. Otherwise, the procedure is concluded. The solution
refined s is returned in line 21.

Interchange Neighborhood Structure

In this neighborhood structure, it is considered the exchange of jobs that
are in the attendance queue of different machines. Figure 4 shows the pseudo-code
of the local search procedure (LS_Interchange) using this neighborhood structure,
which receives as input parameter the solution s to be refined. The loop in lines
2-21 guarantees that the search will continue while exists a better neighbor than the
current solution s. The loop in lines 4-14 searches for the best exchange among jobs
of different machines. If the best exchange takes to a better solution than the current
one, this exchange will be done in line 16. Otherwise, the procedure is concluded. The
solution refined s is returned in line 22.

Relocation Neighborhood Structure

In this neighborhood structure, it is considered the migration of a job i from
the current machine to another one that can also attend the job i. Figure 5 shows the
pseudo-code of the local search procedure (LS_Relocation) using this neighborhood
structure, which receives as input parameter the solution s to be refined. The loop
in lines 2-22 guarantees that the search will continue while exists a better neighbor
than the current solution s. The loop in lines 4-16 searches for the best relocation that
can be done. If the best relocation takes to a better solution than the current one, this
relocation will be done in line 18. Otherwise, the procedure is concluded. The solution
refined s is returned in line 23.

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

69

Procedure VND (s0, N1, N2, N3)

Input

 s0 – a feasible solution;

 N1 – Exchange neighborhood structure;

 N2 – Interchange neighborhood structure;

 N3 – Relocation neighborhood structure.

Output

 s – refined solution.

Begin

01. s s0;

02. k 1;
03. While k ≤ 3 do

04. Apply the local search procedure in s using the neighborhood structure Nk. Let
s’ be the local optimum;

05. If f(s’) < f(s) then

06. s s’;

07. k 1;

08. Else

09. k 				k+1;

10. End-if

11. End-while

12. Return s;

End-VND

Figure 2 - VND procedure used.









Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

70

Procedure LS_Exchange (s)

Input

 s – feasible solution.

Output

 s – refined solution

Begin

01. Finished 				false;

02. While not finished do

03. Best_change 							;

04. For each job i do

05. for each job j (j ≠ i) of the same machine of i do

06. c 				additional cost caused by the exchange of jobs i and j;

07. If c < Best_change then

08. Best_change 				c;

09. Best_i 				i;

10. Best_j 				j;

11. End-if

12. End-for

13. End-for

14. If Best_change < 0 then

15. Make the exchange of jobs Best_i and Best_j;

16. Evaluate the solution s after the exchange;

17. Else

18. finished 				true;

19. End-if

20. End-while

21. Return s;

End- LS_Exchange
Figure 3 - LS_Exchange algorithm.







∞








Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

71

Procedure LS_Interchange (s)

Input

 s – feasible solution.

Output

 s – refined solution

Begin

01. Finished 				false;

02. While not finished do

03. Best_change ;

04. For each job i do

05. Machine _i 				machine that attends the job i;

06. for each job j of the machine Machine_j (Machine_i ≠ Machine_j) that
can attend the job i do

07. c 				additional cost caused by the exchange of jobs i and j;

08. If c < Best_change then

09. Best_change 				c;

10. Best_i 				i;

11. Best_j 				j;

12. End-if

13. End-for

14. End-for

15. If Best_change < 0 then

16. Make the exchange of jobs Best_i and Best_j;

17. Evaluate the solution s after the exchange;

18. Else

19. finished 				true;

20. End-if

21. End-while

22. Return s;

End- LS_Interchange
Figure 4 - LS_Interchange algorithm.



 ∞











Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

72

Procedure LS_Relocation (s)

Input

 s – feasible solution.

Output

 s – refined solution

Begin

01. Finished 				false;

02. While not finished do

03. Best_change ;

04. For each job i do

05. Machine _i 				machine that attends the job i;

06. for each position pos of the machine Machine_j (Machine_i ≠ Machine_j) that
can attend the job i do

07. c 				additional cost caused by the relocation of job i to the position pos of
machine_j;

08. If c < Best_change then

09. Best_change 				c;

11. Best_i 				i;

12. Best_machine 				machine_j;

13. Best_pos 				pos;

14. End-if

15. End-for

16. End-for

17. If Best_change < 0 then

18. Make the relocation of job Best_i to the position Best_pos of Best_machine;

19. Evaluate the solution s after the relocation;

20. Else

21. finished 				true;

22. End-while

23. Return s;

End- LS_ Relocation
Figure 5 - LS_Relocation algorithm.

 ∞
















Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

73

Computational Results
All the computational experiments of this paper were done in a R300

Presario Compaq Notebook with 3200 Athlon Processor and 520 Mb of RAM memory.

The proposed algorithm, as well as the GRASP algorithms used as
comparison, was implemented using the C programming language.

The GRASP algorithms that were implemented for validation of the
proposed algorithm will be presented in Subsection 4.1. The test problems used in the
experiments will be discussed in Subsection 4.2. The experiments done will be shown
in Subsection 4.3.

GRASP Heuristics

It is implement three traditional GRASP algorithms. All of them use the
constructive algorithm described at Subsection 3.1 and respect the standard GRASP
procedure shown in Figure 6. What makes the difference among these strategies is the
structure of the neighborhood used in the local search phase.

The three implemented GRASP algorithms are:

•	 GRASP_Ex – uses the procedure LS_Exchange in the local search phase;

•	 GRASP2_Inter – uses the procedure LS_Interchange in the local search
phase;

•	 GRASP2_Re – uses the procedure LS_Relocation in the local search
phase.

Test problems

For making a comparison among the proposed algorithm and the GRASP
algorithms, described in Subsection 4.1, it is used 16 test problems, created in this
paper, which uses parameters that are close to a real case of the problem of optimizing
the waiting time of the towboats in the port of Imbetiba (Macaé/RJ), problem that
motivated this paper. These test problems have m = 5 to 8 piers (machines) and the
time space to be scheduled varying from T = 48 to 120 hours. Table 1 shows, for each
test problem, the number of piers (m) and the total time for scheduling (T).





Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

74

Procedure GRASP (N_iter, a)

Input

 N_iter – number of GRASP iterations;

 a - defines the randomness intensity of the algorithm.

Output

 Sol – best solution found.

Begin

01. For i 				1 to N_iter do

03. s 		 Construtive_Algorithm (a);

04. s’ LocalSearch_Algorithm (s);

05. If s’ is the best solution until this moment then

06. Sol 				s’;

07. End-if

08. End-for

09. Return Sol;

End_GRASP

Figure 6 - Standard GRASP algorithm.

Table 1 - Test Problems.

Test problem Number of piers (m) Time (T) in hours
Ins5-48 5 48
Ins5-72 5 72
Ins5-96 5 96
Ins5-120 5 120
Ins6-48 6 48
Ins6-72 6 72
Ins6-96 6 96
Ins6-120 6 120
Ins7-48 7 48
Ins7-72 7 72
Ins7-96 7 96
Ins7-120 7 120
Ins8-48 8 48
Ins8-72 8 72
Ins8-96 8 96
Ins8-120 8 120









Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

75

The other parameters of these test problems were defined as following: the
release time (rt) of each towboat was defined randomly between 0 and (T-1) hours.
The time spent on embark/disembark of a towboat was defined randomly between 1
and 24 hours. The amount of towboats, n, of the problem was defined by the following
formula: (m*T)/12, where the denominator represents the medium time of attendance
(embark/disembark) of a towboat (job). The priority of attendance of each towboat
was defined randomly in the interval [0; 5].

Experiments Done

In the first experiment done, the proposed GRASP+VND algorithm and
each GRASP algorithm, described in Subsection 4.1, were executed during N_
iter=1000 iterations for each test problem described in Table 1. This procedure was
repeated five times, varying the seed of generation of random numbers. In this paper,
a version in the C programming language of the generator described in (SCHRAGE,
1979) was used for the generation of the random numbers.

Table 2 - Results of the first experiment.

Test GRASP_Ex GRASP_Inter GRASP_Re GRASP+VND

problem Cost Time Cost Time Cost Time Cost Time

Ins5-48 332 61 335 69,9 323 72,5 327 15
Ins5-72 571 85,4 607 102,7 571 108,8 568 22,76
Ins5-96 1022 129,5 1052 200,6 1085 208,3 992 44,12
Ins5-120 1536 261,8 1585 366,4 1448 388,7 1423 80
Ins6-48 425 96,2 426 113,1 414 116,6 421 24,44
Ins6-72 1169 140,2 1169 176,8 1159 188,1 1147 39,02
Ins6-96 1650 280,1 1693 379,6 1623 398,8 1620 82,14
Ins6-120 1054 432,8 1006 578,3 1050 613,3 958 125,5
Ins7-48 573 128,3 561 149 561 153,9 560 32,66
Ins7-72 1194 212,8 1516 267,9 1144 284,1 1136 59,08
Ins7-96 2161 333,1 2142 522,5 1901 551,8 1968 115,5
Ins7-120 2058 640,7 2138 898,9 1870 969,4 1987 196,34
Ins8-48 778 167,2 788 186,2 784 194,2 767 40,8
Ins8-72 1830 336,5 1791 427,3 1796 447,2 1770 94,78
Ins8-96 1656 561,4 1727 751,5 1731 797,5 1657 163,8
Ins8-120 1970 824,2 1979 1187 1943 1267,7 1822 259,36

Table 2 shows the costs (total waiting times) and the times (in seconds)
obtained, for each test problem, by the proposed algorithm, GRASP+VND, and by the
other GRASP algorithms. In this table, the best costs obtained for each test problem
were emphasized in boldface type. The GRASP+VND algorithm got the best costs for
12 among the 16 test problems. For the other 4, the GRASP_Re algorithm that uses
the Relocation neighborhood structure got the best costs. When the computational
times were compared, the GRASP+VND algorithm always got better times. This
happens because, using the different structures of neighborhood, the convergence in
the local search phase is faster.

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

76

Table 3 - Results of the second experiment.

Test GRASP_Ex GRASP_Inter GRASP_Re GRASP+VND

problem Cost Cost Cost Cost
Ins5-48 346 337 370 327
Ins5-72 571 579 571 568
Ins5-96 1023 1067 1084 992
Ins5-120 1538 1549 1599 1423
Ins6-48 440 426 456 421
Ins6-72 1159 1167 1169 1147
Ins6-96 1646 1673 1689 1620
Ins6-120 1044 1052 1037 958
Ins7-48 567 561 573 560
Ins7-72 1224 1577 1592 1136
Ins7-96 2052 2012 1962 1968
Ins7-120 2242 2179 2450 1987
Ins8-48 754 790 784 767
Ins8-72 1783 1779 1847 1770
Ins8-96 1713 1710 1718 1657
Ins8-120 1990 1943 2066 1822

Once the GRASP+VND algorithm always showed the smallest time in
the first experiment, it was done a second experiment, where it was checked how the
other algorithms would behave in case their execution would be interrupted when
they got the computational time spent by the GRASP+VND algorithm. This way,
the stop criterion of the GRASP algorithms was changed to the time spent by the
GRASP+VND algorithm. Table 3 shows the costs obtained by each algorithm.

In this new experiment, it can be seen the superiority of the GRASP+VND
algorithm. In 15 of the 16 test problems, the cost obtained by the proposed algorithm
was better than the other algorithms. Only in the instance “Ins7-96” the proposed
algorithm was outperformed per 0.3%.

Conclusion
This paper came from the necessity of solving the problem of minimizing

the waiting time of towboats in the port of Imbetiba (Macaé/RJ). This port, because
of being a small one and exclusive from PETROBRAS, has its own rules that turn
impossible the comparison to other researches done to other ports. This problem
was associated to the problem of job scheduling in parallel machines (ARROYO
and RIBEIRO, 2004; DEARING and HENDERSON, 1984; FRANÇA et al., 1996;
MENDES et al., 2002; SUMICHRAST and BAKER, 1987; ZOUBA, BAPTISTE,
and REBAINE, 2009), which is NP-difficult. This way, a good strategy to solve it is
the use of metaheuristics (DRUMMOND et al., 2001; OCHI et al., 1998; VIANNA
et al., 1999).

The hybrid GRASP algorithm proposed, GRASP+VND, was, in the
experiments done, efficient to the class of job scheduling problem in parallel machines
cited in this paper. In one of the experiments done, where the same time of execution

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

77

was given to all the algorithms, the proposed algorithm got the best results for 15 of
the 16 test problems, being outperformed only in one instance by a small difference.
This shows that using a procedure that utilizes different neighborhood structures, like
the VND, can bring benefits when incorporated to the metaheuristic GRASP.

Acknowledgements
This work was finantiated by: Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq); Fundação de Amparo à Pesquisa do Estado do Rio
de Janeiro (FAPERJ); Parque de Alta Tecnologia do Norte Fluminense (TECNORTE);
and Fundação Estadual do Norte Fluminense (FENORTE).

References
Arroyo, J. E. C. and Ribeiro, R. L. P. (2004), “Algoritmo Genético para

o Problema de Escalonamento de Tarefas em Máquinas Paralelas com Múltiplos
Objetivos”, In: XXXVI Simpósio Brasileiro de Pesquisa Operacional, v.1, p.1-11. (in
Portuguese)

Celik, C. and Saricicek, I. (2009), “Tabu Search for Parallel Machine
Scheduling with Job Splitting”, In: Sixth International Conference on Information
Technology, New Generations, p.183-188.

Dearing, P. M. and Henderson, R. A. (1984), “Assigning looms in a
textile weaving operation with changeover limitations”, Production and Inventory
Management, Vol. 25, pp. 23-31.

Drummond, L. M. A.; Ochi, L. S. and Vianna, D. S. (2001), “An
asynchronous parallel metaheuristic for the period vehicle routing problem”, Future
Generation Computer Systems Journal, Vol. 17, No.4, pp. 397-386.

Feo, T. A. and Resende, M.G.C. (1995), “Greedy randomized adaptive
search procedure” Journal of Global Optimization, Vol. 6, pp. 109-133.

França, P. M.; Gendreau, M.; Laport, G. and Muller, F. (1996), “A tabu
search heuristic for the multiprocessor scheduling problem with sequence dependent
setup times”, International Journal of Production Economics, Vol. 43, No. 2-3, pp.
79-89.

Mendes, A.; Müller, F. M.; França, P. M. and Moscato, P. (2002),
“Comparing Meta-Heuristic Approaches For Parallel Machine Scheduling Problems”,
Production Planning & Control, Vol. 13, No. 2, pp. 143-154.

Mladenovic, N. and Hansen, P. (1997), “Variable Neighborhood Search”,
Computers and Operations Research, Vol. 24, pp. 1097-1100.

Ochi, L. S.; Drummond, L. M. A.; Victor, A. O. and Vianna, D. S. (1998),
“A parallel evolutionary algorithm for solving the vehicle routing problem with
heterogeneous fleet”, Future Generation Computer Systems, Vol. 14, No. 5-6, pp.
285-292.

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

78

PETROBRAS. Petrobras’ Homepage – link “Nossa História”. Available at:
<www.petrobras.com.br>. Access: June, 2008. (in Portuguese)

Resende, M. G. C. and Ribeiro, C. C. (2003), Greedy randomized adaptive
search procedures. In: F. Glover and G. Kochenberger (eds.), (2003), Handbook of
Metaheuristics. Boston: Kluwer Academic Publishers, 219-249.

Schrage, L. (1979), “A more portable FORTRAN random number
generator”, ACM Transactions on Mathematical Software, Vol. 5, pp. 132-138.

Sumichrast, R. and Baker, J. R. (1987), “Scheduling parallel processors: an
integer linear programming based heuristic for minimizing setup time”, International
Journal of Production Research, Vol. 25, No. 5, pp. 761-771.

Vianna, D. S.; Ochi, L. S. and Drummond, L. M. A. (1999), “A parallel
hybrid evolutionary metaheuristic for the period vehicle routing problem with
heterogeneous fleet”, Lecture Notes in Computer Science, 1388, pp. 216-225.

Zouba, M.; Baptiste, P. and Rebaine, D. (2009), “Scheduling identical
parallel machines and operators within a period based changing mode”, Computers
and Operations Research, Vol. 36, No. 12, pp. 3231-3239.

Biography
Dalessandro Soares Vianna is Professor in the Computer Science

Department at Fluminense Federal University (UFF). He received his PhD degree
in Combinatory Optimization from Catholic University of Rio de Janeiro (PUC-
Rio), Brazil, in 2004. He received BSc and MSc degrees in Computer Science
from Fluminense Federal University. His research interest includes multi-objective
and mono-objective combinatorial optimization, metaheuristics, operational research
and parallel processing.
Contact: dalessandro@pq.cnpq.br

Sandra Regina Coelho received her MSc degree in Operational Research
and Computational Intelligence from Candido Mendes University (UCAM), Brazil, in
2007. She received her BSc degree in Computer Science from State University of São
Paulo (UNESP). Her research interest includes operational research, metaheuristics
and combinatorial optimization.
Contact: sandrarobl@yahoo.com.br

Marcilene de Fátima Dianin Vianna is Professor in the Economics
Department at Fluminense Federal University (UFF). She is PhD student in
the Natural Sciences Department of State University of the North Fluminense
(UENF), Brazil. She received her MSc degree in Applied Mathematic from
Catholic University of Rio de Janeiro (PUC-Rio), in 2001, and her BSc degree
in Mathematic from State University of Maringá (UEM). Her research interest
includes metabolomics, PCA, PLS, image processing and metaheuristics.
Contact: marcilenedianin@gmail.com

Brazilian Journal of Operations & Production Management
Volume 7, Number 2, 2010, pp. 63-79

79

Article Info:
Received: May, 2010

Accepted: November, 2010

