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1. INTRODUCTION

Location Analysis is one of the most active fields in terms 
of Operations Research. It deals with the decision of optimally 
placing facilities in order to minimize operational costs (Nickel 
et Puerto, 2005). Solved in several situations by intuitive meth-
ods, facility location decisions usually demand more in-depth 
studies. Regardless of the type of business in which the com-
pany is involved, the decisions about location are strategic and 
belong to the core of any management process. Furthermore, 
these decisions lead to long term commitments (Moreira, 
2010) due to high costs involved in installing location facilities.

Each location problem depends on the interests of the 
organization. Thus, some companies prefer to be closer to 
clients (like supermarkets, hospitals or police stations), while 
others are attracted by the proximity to raw materials or 
components (such as cement factories or potteries), or even 
by places where the labor is plenty, well trained or cheap, 
depending on the type of business.

This type of problem has been subject of scientific studies 
for a long time. It traces back to Fermat in the 17th century, 
who proposed the following problem: for three given points 
in a plane, find a fourth one so that the sum of its distance to 
the three existing points is minimum. This geometrical prob-
lem was solved by Torricelli in 1647 (see more in Wesolows-
ky, 1993; Smith et al., 2009). 

In 1909, Alfred Weber proposed a generalization for this 
problem. The minisum problem, also known as the Weber 
problem (cf. Wesolowsky, 1993; Fekete et al., 2005) is a 
central problem in location theory. It refers to a situation in 
which there exists a set of demand points and the location 
of a facility must be chosen such that the total sum of the 
weighted distances from the points to the facility is mini-
mized. The function to be minimized is presented below:

        (1)

Where n is the number of client points p1, p2,..., pn in R2; 
wi are weights and; ||.|| is the Euclidean norm. The We-
ber problem is convex with a non-differentiable objective 
function, since the facility location may coincide with a cli-
ent location. Real life applications for this problem are many 
(e.g. Correa et al., 2004; Johnson et al., 2005; Pelegrín et al., 
2006; Beresnev, 2009; Marín, 2011). 

The choice of the location may have influence over the 
relations between the company and its clients. If the client 
must be physically in the process, it is unlikely that a location 
is acceptable if the travel time or distance between the pro-
vider and the client is large. (Krajewski et al., 2009)

Particularly, for some emergency services (e.g. ambulanc-
es, police calls), the service provided by the facility has no 
effect after certain threshold time/distance. For example, a 
house on fire would be completely destroyed after a given 
period of time. In the case of a police call, criminals would be 
likely untraceable after a time limit. 

This model characteristic can be approached in different 
ways. Evans et al. (1997) proposed a min-max model to de-
termine the location for these types of emergency units. The 
model has the objective of locating a facility among a group 
of candidates, such that the distance to the farther client 
is minimized. Drezner et al. (1991) proposed a variation of 
the Weber problem to model location problems in which the 
service provided by the facility is insensitive after a thresh-
old distance (directly related to a maximum time limit). To 
illustrate their model, let us use an example provided by 
Drezner et al. (1991) to locate a fire station. In this context, 
each property has a limit distance after which the service 
provided by the fireman would be useless, and the property 
would be completely destroyed. A certain damage occurs in 
a property located in pi for i = 1,…, n at a null distance from 
the fire station (located at y ∈ R2),  linearly increasing up to 
a distance λi, where the damage is 100%. By denoting d(pi, 
y) the distance between the point pi and the facility located 
at y, and Ω the proportion of damage at zero distance, the 
proportion of damage in pi is given by Ω + (1 – Ω) d(pi, y) / λi 
in the case d(pi, y) < λi, and 1 otherwise. The corresponding 
facility location problem is then expressed as:

    (2)

The first term of the summation is constant and (1 - Ω) 
is irrelevant to the second term. By introducing binary vari-
ables υi that select between d(pi, y) and λi to the summation 
of the objective function, we have the minimization problem 
defined in (3).

     (3)

Fernandes et al. (2011) extended the model of Drezner 
et al. (1991) by adding capacity constraints to the service 
provided by the facility. In some real applications, during the 
operation of a facility, there are a maximum number of cli-
ents who can be served without affecting the service quali-
ty. In other situations, it is necessary to add to the model a 
minimum limit of users that would justify the existence of 
the facility. 
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The structure of the paper is as follows. The discrete fa-
cility location problem with limited distances and capacity 
constraints is mathematically formulated in the next section. 
In the following, our solution algorithm is described and a 
formal demonstration of its optimality is presented. After 
that, we report our test results, referring to the efficiency 
and effectiveness of the algorithm. Finally, conclusions are 
given in the last section.

2. MATHEMATICAL DEFINITION OF THE PROBLEM

Let us define d(pi, y) as the distance between point pi and 
the facility y located in R2. Given n service points in the plane 
p1, p2,..., pn with limited distances λi > 0 and weights wi ≥0 for 
i = 1,..., n, the discrete limited distance in terms of the mini-
sum problem with capacity constraints may be expressed by:

 

        (4) 

The first set of constraints defines bounds LB and UB in 
the number of variables υi that can be equal to 1. The second 
set of constraints assures that υi can be equal to 1 only if the 
distance between pi and the facility located at y is inferior (or 
equal) to the limit distance λi. This avoids the attribution υi = 

1 only to satisfy the constraint∑=
≥

n

i i LBv
1

. The objective 
function of (4) and its feasible set is non-convex, which de-
mands more sophisticated solution methods. In this model 
the variable y may assume a value from a discrete finite set 
of values Y.

The objective function (4) may still be rewritten by re-
moving its constant terms. It is then expressed as: 

      (5) 
Fernandes et al. (2011) approached the continuous version 
of the problem. The only difference between the continuous 
and discrete version lies in the fact that the facility location 
y is constrained to be in R2, instead of within a finite set Y Ì 
R2. The authors propose a global optimization algorithm for 
the problem based on a decomposition that, initially, selects 

for evaluation only the sub regions of the plane that may 
contain the optimal solution y*. Next, each subproblem is 
convexified and then solved by convex optimization solvers.

Discrete location models are very common in real appli-
cations where there are often a finite number of potential 
places where the facility can be installed. The p-median 
problem (cf. Galvão, 1980; Mladenović et al., 2007) is a pop-
ular example of a discrete facility location model.

Proposed polynomial time algorithm

Problem (4) has a smaller complexity if compared to its 
continuous version, since the number of potential candidates 
is already known beforehand in the plane. The pseudo-code 
of the algorithm proposed here to the problem is presented 
in Figure 1. From lines 1 to 7, the variables that configure 
an instance for the problem are created, while lines 8 and 
9 create two variables to store the best solution y* with its 
corresponding cost (BestCost). The main loop in lines 10-24 
calculates, in each iteration, the facility installation cost for a 
candidate place, and selects the best alternative.

For a candidate point y, line 11 assigns to the set SP all the 
client points that can be served if the facility is installed in y, 
according to the limited distance constraint. If the cardinali-
ty of SP is superior to the lower bound LB (logical test at line 
12), the elements from SP are sorted in non-decreasing or-

der according to the difference )),(( ii yidw λ−  (observe 
that these values are negative by SP definition). The current 
solution cost is initialized at line 14. In line 15, B is defined 
as the amount of client points that would be served by the 
candidate point – either the regular quantity served or max-
imum UB, in case |SP| is superior to UB. The loop in lines 
16 to 18 is iterated until all the points in B are considered. 
The best solution is updated in lines 19-22 if the investigated 
solution at the current iteration is better. Finally, the best 
solution is returned in line 26, with cost corrected through 

the addition of the constant term ∑=

n

i iiw
1

λ in line 25.
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Figure 1. Polynomial-time algorithm proposed to the optimization 
of problem (4).

The proposed algorithm is polynomial, and its complexity 
is analyzed by observing its structure. The loop in lines 10-
24 is executed for each location that is candidate for facility 
installation (O(|Y|)). The SP set construction at line 11 takes 
O(|I|) time, since all client points are evaluated for their in-
clusion in SP. The sorting operation in line 13 for the ele-
ments in SP has complexity O(|I|  * Log (|I|)), and it is the 
most expensive operation for the main loop. Hence, the final 
complexity of the algorithm is O(|Y| * |I| * Log(|I|)). The 
optimality of the algorithm is assured by the proof below.

Proposition 1: The proposed algorithm finds the optimal 
solution for the discrete single facility location problem with 
limited distances and capacity constraints.

Proof: Let us assume y* as the optimal place to the instal-
lation of the facility.

The algorithm selects the first B elements of SP where B = 
min{∣SP∣, UB}. These elements i Î SP are sorted increasingly 
according to wi (d(i, y*) – λi) ≤ 0. 

Let us assume an optimal solution v*, which corresponds 

to the points served by y*, respecting ∑=
≤≤

n

i i UBvLB
1

*

. We have vi* = 1, if the facility in y* counts the term 
wid(i, y*) in the objective function and vi* = 0 if it counts wiλi.

Let us denote V = {i | vi* = 1}. Let’s analyze two situations:

∣V∣ < B. 

If B = |SP| or B = UB, we can take an element i’ ∈ SP and 
i’ ∉ V so that vi’* = 1. This way, we obtain a better solution 
than the previously assumed best solution (a contradiction).

∣V∣ > B. 

If B = UB and ∣V∣ > B, the solution assumed as the best 
is infeasible. Otherwise, if B = ∣SP∣, there is an element i’ in 
V that doesn’t belong to SP. Thus, this element may be re-
moved from the solution (vi’* = 0) in order to obtain a better 
solution than v* (contradiction).

So, ∣V∣ = B. Yet, we still need to prove that the elements 
in V correspond to the first B elements in SP. Let us suppose 
that this is not true: there is an element i1 among the first B 
elements from SP that is not in V.  Without loss of generality, 
we also assume wi (d(i, y*) – λi) ≠  wj (d(j, y*) – λj), “ i,j Î I. Since 
∣V∣ = B, there is an element i2 in V that is not among the B 
first elements from SP. Therefore, V is not optimal, because 
we can do vi1* = 1 and vi2* = 0, and consequently, the solu-
tion cost of v* is improved (contradiction).

Hence, the algorithm proposed in Figure 1 finds the opti-
mal solution for the discrete single facility location problem 
with limited distances and capacity constraints. 

3. COMPUTATIONAL TESTS

To evaluate the performance of the algorithm proposed, two 
sets of experiments were devised. The first one tests the efficien-
cy of the algorithm and its computational limits, while the second 
set tests the accuracy and efficacy of the algorithm to provide an 
approximation to the continuous version of the problem.

The algorithm was run in an Intel Core 2 Duo E4500 plat-
form with 2.20 GHz and 2 Gb of RAM memory. The algo-
rithm was implemented in C++ and compiled by Dev-C++.

First set of experiments: accessing algorithm’s 
performance

In this set of tests, we tried to detail the performance 
of the algorithm under different possible scenarios, which 
may help the decision maker to define its application and 
usability for real-world problems. These tests were designed 
to investigate the influence of: (i) the threshold distance val-
ue, (ii) the lower and upper bounds: LB and UB, and (iii) the 
number of candidate/client points for facility location over 
algorithm performance.
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Problem instances were artificially generated from a uni-
form distribution in the unit square. The threshold distanc-

es scenarios were created with 8
2,4

2,2
2=λ , 

where 2 is the diagonal of the unit square. In this set of 
experiments, all generated points are candidate for install-
ing the facility.

The instances are listed in Table 1. In the first column it is 
shown the number of points in each instance. In the second 
column the threshold distance for each instance is given, 
and in the next two columns the capacity constraints val-
ues LB and UB are defined. The last two columns report CPU 
times (in seconds) and the obtained cost, respectively.

Table 1. Results for the first set of experiments

Points
Threshold 
Distance 
Values

LB UB Time (s) Cost

100

2
2

2 4 0.02 17.07

4 8 0.02 16.68

6 12 0.02 16.50

4
2

2 4 0.02 34.06

4 8 0.02 32.97

6 12 0.02 32.07

8
2

2 4 0.02 67.95

4 8 0.02 65.44

6 12 0.02 63.14

1,000

2
2

2 4 1.25 176.31

4 8 1.25 175.69

6 12 1.27 175.14

4
2

2 4 1.63 352.60

4 8 1.59 351.27

6 12 1.63 350.02

8
2

2 4 2.66 704.19

4 8 2.61 701.44

6 12 2.63 698.75

10,000

2
2

2 4 131.47 1769.30

4 8 128.50 1768.61

6 12 130.89 1767.93

4
2

2 4 198.34 3538.59

4 8 249.20 3537.20

6 12 258.80 3535.82

8
2

2 4 584.95 7067.18

4 8 587.78 7064.37

6 12 515.05 7061.57

100,000

2
2

2 4 17198.27 17699.29

4 8 16116.03 17698.59

6 12 16561.81 17697.89

4
2

2 4 20271.89 35398.58

4 8 30320.16 35397.17

6 12 20752.42 35395.77

8
2

2 4 43495.27 70697.17

4 8 40879.63 70694.35

6 12 51850.00 70691.54

In Table 1, we note that variation in the threshold distance 
value directly affects the computing times. For instances 
with the same number of points, as well as the same lower 
and upper bounds, increasing the threshold distances is like-
ly to increase the cardinality of SP. Indeed, candidate points 
may now be closer to client points, thus eventually serving 
more points within the allowed distance. The most expen-
sive part of the algorithm occurs in line 12 of the algorithm, 
where the set SP is sorted – the bigger the set is, the longer 
it takes to sort. For example, in the instances with 100,000 
points, including 2 and 4 as capacity constraints values, the 
computing time varies from 17,198.27 to 43,495.27 seconds 
by changing the threshold distances.

CPUs time also increase as the number of candidate point 
for facility location augments, as shown in Figure 2 for the 
instances with LB=2 and UB=4.

Figure 2. Computing times for instances with LB = 2 and UB = 4 
with different threshold distances. The curves are approximated 

by quadratic functions.

Other parameters that may affect the algorithm’s efficien-
cy are the capacity constraint values LB and UB. Regarding 
the upper bound value, as UB augments, more points in SP 
set may have to be verified in lines 15-17 of the algorithm. 
Figure 3 presents increasing computing times as UB aug-
ments in the instance generated with 10,000 points, with 

4
2=λ  and LB = 2.
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Figure 3. Decay in the algorithm’s efficiency due to an increase 
in the upper bound value in the instance with 10,000 points, l = 

4/2  and LB = 2. The curve is approximated by a quadratic 
function.

Lower bound values usually have a considerable impact 
over the algorithm performance, its intensity depending on 
the dispersion of the points of the instance. As larger lower 
bounds LB are used, the algorithm takes less time to execute 
them since more candidate points do not meet the condi-
tion in line 11. Figure 4 shows the computing time spent by 
the algorithm on solving the generated instance with 10,000 
points, with l = 0.1 and UB = +∞, while varying the lower 
bound value LB.

Figure 4. Computing time decay caused by an increase in the 
lower bound value in the instance with 10,000 points, l = 0.1 and 

UB = +∞.

Figure 5 presents the variation in the number of subprob-
lems for the same experiment, i.e. |SP| ≥ LB, as the lower 
bound value increases. We note that the number of sub-
problems decreases in the same rate of the graph in Figure 
4. They actually have the same behaviour and show the im-
portance of the LB parameter for the performance of the 
algorithm.

Figure 5. Number of subproblems solved as LB augments and UB = 
+∞ in the instance with 10,000 points and l = 0.1.  

Second set of experiments: comparison with the global 
optimization approach

Fernandes et al. (2011) proposed a global optimization 
algorithm for the continuous version of the facility location 
problem with limited distances and capacity constraints. In 
this section, we test how the algorithm, proposed here, ap-
proximates the solution of the continuous problem in the 
instances of Fernandes et al. (2011) when used as a grid 
search method. 

To perform this comparison, we constructed a grid with 
a mesh that adjusts the precision of our approximation. The 
grid is bounded by the location of the most distant points, 
and the limited plan is divided in an equal number of cells as 
shown in Figure 6. The points in the intersections of the cells 
represent candidate points to facility location. 

Figure 6. Grid for the problem divided in nine cells. The black dots 
represent the clients and the red ones represent candidates to 

facility location. 
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The quality of the approximation depends directly on the 
size of the mesh. A mesh with size g=3, has 3x3=9 cells. This 
value influences algorithm’s performance due to its direct 
relation with the number of candidate points. As g increas-
es, more candidate points are put in Y, thus improving the 
quality of the approximation.

Fernandes et al. (2011) proposed 9 instances, with differ-
ent numbers of client points, threshold distances and capac-
ity constraint values. The instances can be found at http://
www.gerad.ca/~aloise/publications.html. They may be di-
vided into three groups, according to the number of clients: 
the first 3 have 10 client points, the next 3 have 100 and the 
last 3 have 1000 client points. The lower and upper values 
(LB) and (UB) were made constant within each group: LB=2, 
UB=4 for instances with n=10; LB=4, UB=8 for instances with 
n=100 and; LB=6, UB=12 for instances with n=1000. 

Table 2 reports the results obtained by the grid search al-
gorithm proposed here in comparison with the results of Fer-
nandes et al. (2011) for the continuous model. The first column 
presents the name of the instances. The second column shows 
the threshold distances of the instances, which is equal for all 
candidate points. The next six columns present cost results 
and computing time for different g values. Each cost value is 
reported by a ratio between the optimal solution value in the 
continuous model, obtained by the decomposition algorithm, 
and the solution value obtained by the grid search algorithm. 
Finally, the last two columns report the optimal solutions and 
CPU time spent by the decomposition algorithm of Fernandes 
et al. (2011) on solving the continuous model.

The continuous model is a relaxation of model (4) (since
2ℜ⊂Y ). Consequently, the solutions obtained by the grid 

search algorithm are always greater or equal to the solutions 
obtained in the decomposition algorithm of Fernandes et al. 
(2011). However, it is noted that, for the instances tested, the 
ratio between their costs was never inferior to 0.99, which 
attests the goodness of our approximation in the tested in-
stances (this conclusion cannot be directly generalized for all 
possible instances due to the limitation of grid search global 
optimization algorithms – cf. Hendrix and Tóth (2010)).

Figures 7 and 8 illustrate how the grid search and decom-
position algorithms are influenced by the threshold distance 
values l in the instances with 100 and 1000 points, respec-
tively. For both figures, we note that the grid algorithm is 
insensitive to l (indeed this value is just slightly increased in 
this set of experiments), and increases its CPU time as g aug-
ments. In Figure 3, the decomposition algorithm is outper-
formed by the grid search algorithm, regardless of the mesh 
precision; however, l ≥ 73.23. For the instances with 1000 
points, this happens for l ≥ 27.02. Furthermore, we can also 
conclude from the figures that the decomposition algorithm 
is always outperformed by grid search algorithms in the test-
ed instances if g ≤ 50.  

Figures 9 and 10 show the influence of the value g over 
the performance of the grid search algorithm in instances 
l2_1000_1 and l2_1000_001. The curves in the figures pres-
ent CPU time spent by the grid search algorithm for differ-
ent values of g. The dotted lines in both figures represent 
CPU time spent by the decomposition algorithm in the re-
ferred instances. As observed, the performance of the grid 
search algorithm deteriorates as more candidate points are 
searched. This deterioration is accompanied by an improve-
ment in terms of the approximation, representing a tradeoff 
for the decision maker between quality and performance 

Table 2. Comparison of results between the grid search algorithm and the decomposition algorithm of Fernandes et al. (2011)

Grid search algorithm
Algorithm proposed 
by Fernandes et al. 

(2011)
g = 50 g = 250 g = 500 -

Instances λi Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s)
l2_10_1 178.53 0.9988 0.031 0.9993 0.734 0.9998 2.781 1475.14 1.24

l2_10_01 206.5 0.9989 0.031 0.9994 0.75 0.9998 2.796 1670.93 2.56

l2_10_001 225.78 0.9986 0.031 0.9996 0.734 0.9997 2.843 1805.25 18.2

l2_100_1 60.14 0.9997 0.328 1 6.3 1 25.593 5873.85 3.45

l2_100_01 73.23 0.9997 0.328 1 6.265 1 25.64 7129.83 31.5

l2_100_001 84.08 0.9995 0.328 1 6.328 1 25.609 8160.58 125.94

l2_1000_1 19.13 0.9991 2.609 0.9999 62.36 1 263.953 19063.44 29.46

l2_1000_01 23.42 0.9993 2.609 0.9999 62.187 1 254.734 23327.7 93.01

l2_1000_001 27.02 0.9994 2.656 1 63.628 1 259.14 26903.01 319.22
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when using the grid search algorithm. Indeed, the decom-
position algorithm is preferred when it presents a better 
performance than the grid search algorithm for a particular 
value of g (for instance, in Figure 6, for g ≥ 250). 

Figure 7. Computing time for instances with 100 points spent by 
the grid search algorithm for g values of 50, 250 and 500, and by 

the decomposition algorithm (Tdecomposition).
 

Figure 8. Computing time for instances with 1000 points spent by 
the grid search algorithm for g values of 50, 250 and 500, and by 

the decomposition algorithm (Tdecomposition).

Figure 9. CPU time for the instance l2_1000_001 spent by the 
grid search algorithm for g values of 50, 250 and 500, and by the 

decomposition algorithm (Tdecomposition)

Figure 10. CPU time for the instance l2_1000_1 spent by the 
grid search algorithm for g values of 50, 250 and 500, and by the 

decomposition algorithm (Tdecomposition)

4. CONCLUSIONS

The introduction of capacity constraints while locating a 
facility in the plane with limited distances may serve to justi-
fy its installation or to describe service limitations. This work 
sought to analyze the single facility location problem with 
limited distances and capacity constraints for a finite set of 
candidate points. Fernandes et al. (2011) devised a global 
optimization decomposition method to the same model, but 
with the possibility of locating the facility in the continuous 
Euclidean plane.

In this paper, we proposed a polynomial-time algorithm 
to the discrete problem. The algorithm was tested for differ-
ent scenarios by varying instance parameters that influence 
its performance, such as the number of candidate points, 
threshold distance values, and lower and upper bounds in 
the number of served points. Moreover, we compared our 
algorithm within a grid search framework with the decom-
position algorithm of Fernandes et al. (2011). These com-
putational experiments showed that the quality of approx-
imation provided by the grid search algorithm in the tested 
instances is high, always above 99%. While the quality of the 
approximation can be further improved by increasing the 
precision of the mesh, the performance of the algorithm is 
compromised since its computational complexity depends 
directly on the number of candidate points for facility instal-
lation. 

As shown by the experiments, the proposed algorithm 
can work with instances with thousands of demand points. 
It is worth mentioning that the mathematical formulation of 
the problem, as well as the algorithm proposed here, does 
not depend on the distance norm adopted; it only considers 
that a distance matrix is provided. 
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