
Brazilian Journal of Operations & Production Management 14 (2017), pp 10-18

SOFTWARE TESTING ESTIMATION: BIBLIOGRAPHIC SURVEY IN BRAZILIAN
AND INTERNATIONAL ENVIRONMENTS

Fernando Oliveira de Araujoa; Luciana Vago Matielib

a Fluminense Federal University (UFF) - Niterói, RJ, Brazil
b Accenture - Rio de Janeiro, RJ, Brazil

The methodologies used in the market regarding pricing practices related to software testing activity are strongly based on
empiricism, without the parameters and criteria that are widely accepted, what does not confer the due credibility in terms
of time and cost for businesses. Despite the highlighted theoretical and empiric importance assigned to the field of software
testing, in Brazil, investigations on the theme software testing estimation are still scarce. This article provides a literature re-
view of the main academic publications in national and international circulation which focus on the study of how to estimate
software testing, aiming at fomenting and guiding further national researches specifically dedicated to this thematic. The re-
view has provided both the characterization of how to estimate software testing and survey of the main existing techniques.

Keywords: Software testing estimation; methodology for software testing estimation; software quality

ABSTRACT

ABEPRO
DOI: 10.14488/BJOPM.2017.v14.n1.a2

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

11

1. INTRODUCTION

Brazilian Telecommunication Companies usually hire
outsourcing companies to carry out development and
testing their systems. Every creation and/or change to
computational systems, besides the software development,
demands functional and/or performance tests to be
performed in order to assure that the change has been made
according to the functional and technical requirements
specified.

Testing is a fundamental activity to assure the software
quality. Some of the main challenges in tests are to match
test cases and requirements correctly, in order to provide
accurate information, estimations and follow up the test
progress accordingly (LIOU, 2010).

According to Nguyen et al. (2013), software testing
is an important activity in software development and
maintenance projects, assuring quality, applicability and
usefulness of software products. Actually, no software can
be released without a reasonable quality of tests involved.
In order to reach the acceptable quality, software project
teams assign a substantial share of the total development
effort to test performance. According to reports from the
industry, software testing takes about 10-25% of the project
total effort, and in some projects this number may reach
50%.

To Zhou et al. (2013), software testing, defined as the
software systematic execution with the purpose of revealing
failures, is an important stage to validate the software
correctness. Software testing activities are composed of
the definition of test cases and validation of the execution
behavior. In general, the execution of test cases is limited,
since validating all of the execution paths tends to be
inevitable in terms of time and cost. Thus the quality of
the test cases affects directly the software quality, and one
of the features of quality test cases is the ability to detect
failures that are still to be revealed.

To Lazic et Mastorakis (2008), software testing is an
activity that can provide the product with visibility and the
process with quality. Test metrics are among the facts that
managers can use in the project in order to understand its
current position and prioritize its activities, so that they can
reduce the risk (or impact) of running out of time before the
software is ready to release.

In the same line of thought, Aranha et Borba (2007)
mentioned that software testing is an activity that has been
aggregating more and more quality to the development
process as well as the final product. It has been enriched
by own methodologies, automation tools, and independent
and trained teams. However, as well as the software
development projects, testing projects has the same
challenges and issues related to cost and time.

A common activity performed in order to assure the
software quality is the execution of tests (ARANHA et
BORBA, 2007).

A system testing estimation is subjective, as there are
many variables that interfere with its final result, such as
the knowledge level of the professional who is making the
estimation, the features of each system to be tested, whether
the system allows to perform parallel tests, so that it is
possible to budget more professionals with little experience,
whether there is, or not, a support documentation , among
other variables. One of the biggest difficulties in the realm of
software testing activities is to evidence clearly the activities
that will be performed with its costs and times.

According to Patel et al. (2001), making an effective
estimation of a software project is one of the most important
and challenging ones. Only with a precise and reliable
estimation it is possible to complete a project before the
deadline. Estimations play a vital role in all the stages of the
software development life cycle.

As Tronto et al. (2008) point out, a critical issue in software
project management is how to make precise estimation of
size, effort, resources, cost and time spent in the process
development. Underestimations generated by time
pressures may compromise the functional development
and the software testing. Just as an overestimation may not
match the project and generate non-competitive budgets.

In the same line of thought, Liou (2010) mentions that
the purpose of software estimation is to generate realistic
estimations, both for the project team and for the client
(the project sponsor). An inaccurate estimation may cause
problems that no cost may recover. Besides that, producing
an estimation intended to please the client, but not in
accordance with the project team, may lead the project to
failure.

In this context, the importance of software testing
activities is reinforced, in addition to a correct estimation.
Nevertheless, in the international academic environment,
the number of publications concerning specifically software
testing estimation is small. When searching the bases Scopus
and Web of Science with combined words “Software Testing”
and “Estimation”, and “Software Test” and “Estimation”,
188 publications were found; however from the titles and
abstracts, only 7 publications that had some relation to the
theme concerned could be selected.

A specific lack of technical and scientific documents in
Portuguese also stands out, which represents a fragility to
the organizations and professionals who work in software
testing activities – still strongly based on empiricism.

Given the theoretical challenge above, this study aims
to provide a systemization of the technical and scientific
literature on methodologies and software testing activities,

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

12

also incorporating an investigation on the border of the state
of marketing practices related to software testing activities.

As expected contributions, this work aims to reduce a gap
seen in the literature, concerning systemization of studies
related to software testing, aiming to consolidate the main
evidences and propositions presented.

In terms of structure, this work is organized in 4 sections,
namely: the methodology used in the study is described in
section 2; section 3 is dedicated to describing the results
and discussions; and section 4 presents the conclusions and
suggestions for further studies.

2. METHODOLOGY

The bibliographic survey was made from indexed
periodicals in the multidisciplinary databases Scopus and
Web of Science, accessed in the period from November
11th, 2013, to May 20th, 2014, through CAPES Periodicals
Portal.

 The first researches were carried out in the databases
SCOPUS and Web of Science using the following keywords
separately: “Software Testing”; “Software”; “Estimation”.
This first search initial goal was to identify and investigate the
general amount of publications in the respective databases,
with no restriction. As a result of this first research, it was
possible to evidence many themes related to the three
keywords searched separately. Within the field of software
testing were found themes on failure prediction in large
software projects, software automation, regression test,
estimation of the number of faults found along the tests,
test data generation (inputs), estimations for test cases
generation, among others.

Because of the high dispersion and variety of records
found, it was necessary to refine the research, so that it was
necessary to combine some words, “Software Testing” AND
“Estimation” and “Software Test” AND “Estimation”, intended
to restrict the research universe, besides considering only
the articles in the field of computer science.

After carrying out these searches, the 25 duplicate
records found in the bases SCOPUS and Web of Science
were properly discarded, remaining a total 188 articles to be
analyzed, from the titles and abstracts.

From the analysis of the titles and abstracts of the
188 articles, 7 were selected for reading and full analysis,
being considered relevant and lined up with the study
concerned. Then the result achieved is shown, focusing the
presentation on the main references for each topic taken
into consideration. The data of the articles are illustrated in
Table 1.

In an analog way to the researches in the bases Scopus
and Web Science, a survey was carried out in the database

of SciELO.Org in the period from May 25th, 2014, to May
28th, 2014. The results of this research evidenced many
themes related to three keywords searched separately:
“Software Testing”; “Software Test”; “Estimation”, being
necessary to combine some words, “Software Testing”
AND “Estimation” and “Software Test” AND “Estimation”,
intended to restrict the research universe.

The search in the ScieELO.Org database did not return
any publication pertinent to developing bibliographic
review; although finding 19 articles, none matches the
research central theme. Figure 1 illustrates the abstracts of
the researches in the databases Scopus, Web Science and
SciELO.Org.

3. RESULTS AND DISCUSSION

According to Lopes et Nelson (2008), most of the
estimation models applied to development also aim at
estimating the test effort given to the importance of this
activity. In this way, it was possible to identify eight different
themes for discussion about software testing estimation: (i)
Estimate produced from a software development project
effort distribution; (ii) Estimate produced by a percentage

Author
(Publication Year) Article Abstract

Christodoulakis D. et
Panziou G. (1990)

Optimal estimation techniques are applied to
predict the future behavior of software systems.

Jiang, Li-Xin; Han,
Wan-Jiang; Yan,
Chen-Chen et Shi,
Bo-Ying (2012)

In this paper, a function testing size estimation
model based on testing steps is proposed. The
model applies to black box testing. A global
analysis on COCOMO model is carried out. Its
basic steps include: design test cases, sum total
test steps, define the parameters in the model
based on the pattern of model, define size
factor, and calculate test size.

Liou, Jing-Chiou
(2010)

In this paper, we present a parametric model for
software test estimate along with a test graph
for matching test cases with requirements and
test cases analysis to aid in producing more
accurate estimates.

Nguyen, Vu; Pham,
Vu et Lam, Vu (2013)

This paper describes a simple process, which
we name qEstimation, to estimate the size and
effort of the software testing activities. The
process incorporates a proposed approach to
measuring the size of the test case based on
its checkpoints, preconditions and test data, as
well as the type of testing.

Srinivasan,
Krishnamoorthy
et Fisher, Douglas
(1995)

This article describes two methods of machine
learning, which we use to build estimators of
software development effort from historical
data.

Tronto, Iris Fabiana
de Barcelos; Silva,
José Demísio Simões
da; et Sant’anna,
Nilson (2008)

This paper aims to offer alternative methods
for those who do not believe in estimation
models, based on artificial neural networks and
regression.

Zhu Xiaochun; Zhou
Bo; Hou LI; Chen
Junbo et Chen Lu
(2008)

This paper proposes an experience-based
approach for test execution effort estimation.
The approach is characterized by a test set as
a 3-dimension vector which combines test case
number, test execution complexity and the
tester’s experience.

Table 1. Articles found

Source: The authors own

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

13

of the time for development; (iii) Estimate produced on
function points (FP); (iv) Estimate produced on use case
points (UCP); (v) Estimate produced on test cases points
(TCP); (vi) Estimate produced by test point analysis (TPA);
(vii) Estimate produced from testing projects historic bases;
(viii) Estimate produced from Simple Estimate Test (SET).

3.1. Estimate produced from a software development
project effort distribution

To Patel et al. (2001), traditionally an estimate of effort
for tests was a percentage of the remaining stages of the
development life cycle. This approach to estimation is
more prone to errors and brings more risk of delaying the
deadlines for releasing the product.

According to Pressman (2005), the recommended effort
distribution throughout the software process is often
referred to as the rule 40-20-40. This rule recommends that
40% of the effort is reserved for analysis and design, 20%
of the effort is reserved for coding, and 40% of the effort is
reserved for testing. This effort distribution should be used
only as a guideline and it varies according to the features
of each project. The rule is very simple to be applied, as
illustrated in Figure 2.

To Matieli (2014), applying a percentage to estimate
testing effort, the important points such as the coverage and
the complexity of the tests are not considered and may have
systems that require much more complexity in the tests. In
these cases, the testing effort estimated by this rule tends to
be much less than what should be performed.

Currently the rule 40-20-40 is under attack. Some believe
that over 40% of the global effort should be spent during the
analysis and design. On the other hand, some supporters
of agile development argue that less time should be spent
“in the front” and that a team should move rapidly to the
building process.

Figure 1. Researches in the databases SCOPUS, Web of Science, and SciELO.Org
Source: The authors own

Figure 2. Effort Distribution (40-20-40)
Source: Pressman (2005)

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

14

3.2. Estimate produced based on the percentage of time
for development

According to Lopes et Nelson (2008), in this technique the
test effort estimated is based on the development estimated
value of time/effort (number of lines of code or points per
function), i.e., the number of lines of code or points per
function is counted and a percentage is applied to this result
to estimate the testing time. According to Matieli (2014), a
positive aspect of this technique would be that after counting
the number of lines of code or function points, applying a
percentage, the testing estimation is produced more agilely.
However in this technique the test nature, environment,
complexity of test cases, among other variables, are not
taken into consideration

To Nageswaran (2001), this method is not based on any
scientific or technical principle. Delays in schedules may vary
50-75% from the estimated time. This method is far from
being the most used.

3.3. Estimate produced on function points (FP)

To Lopes et Nelson (2008), the estimated effort and test
case is determined by function point estimation, according
to Capers Jones. The formula used is: number of test cases
= (function point) to the power 1.2. It can produce accurate
estimates as long as the analysis of function points is also
accurate. Capers Jones’ estimation feature different efforts
depending on the consideration made due to having a
polynomial increase, where the number of test cases equals
(function point) to the power 1.2. The number of test cases
grows as the system size grows. Therefore, when we consider
the estimation for each use case and then we add the result
achieved from the use cases, the result of effort will be less
than when we consider the project total size. The bigger the
size in function points, the bigger will be the effort spent.
Another point is that this technique does not provide a test
estimate in hours and it does not consider any characteristic
of a software project.

According to Mastorakis et al. (2009), the disadvantage
of using this technique is that the requisites are required in
advance.

3.4. Estimates produced on use case points (UCP)

To Aranha et Borba (2007), the estimate produced by use
case points (UCP) is an extension of the estimate produced
by the function point (FP) and it estimates a system size
based on each use case specification. Both UCP and FP
consider a system development complexity.

According to Lopes et Nelson (2008), the effort estimated
for the test is found by multiplying the adjusted UCP with a
conversion factor. This conversion factor denotes the number

of men/hour that represents the test effort required for a
combination of language and technology. This conversion
factor is determined by the organization for the given
combinations. Use case points (UCP) was developed based
on function points, and in the philosophy both methods
are based on is the same, i.e., the functionalities seen by
users are the basis to estimate the software size. The lack
of universal patterns to build use cases makes it difficult to
compare projects from different organizations. Thus, if the
criteria used to build the use cases are very diverse, there
is no way to assure that the use cases will be measuring the
same thing.

3.5. Estimate produced on test case points (TCP)

To Patel et al. (2001), the estimate based on test case
points is considered one of the most accurate estimations for
functional tests due to emphasizing factors that determine
the complexity of the cycle of tests as a whole. This technique
combines four stages of the testing process: test cases
generation, scripts implementation for automated tests,
manual tests execution, and automated tests execution. It
can also be used in processes where one or more stages of
the process are applied.

Still according to Patel et al. (2001), as said above, the TCP
analysis generates test efforts for the separate test activities.
This is essential, because the test projects tend to fall under
four different models. Although, in practice, most of the test
projects are a combination of the four models of execution,
as illustrated in Figure 3.

An advantage seen in this technique is the emphasis on
test automation, and the flexibility of estimating software
tests that are run: only manually, only automated, or both
manual and automated. The technique does not establish
any criteria to transform the points achieved by test case in
test effort.

3.6. Estimate produced on test point analysis (TPA)

According to Souza et al. (2010), among the effort
estimation techniques for software test, test point analysis
(TPA) is considered in literature as the most consistent.
However, although the technique authors claim that it was
used by some organizations and they had good results, no
detailed reports or measuments to prove such results were
found.

To Veenendaal et Dekkers (1999), the estimated effort
is to define, develop and run functional tests, based on
the software development complexity (derived from the
function point analysis technique), also considering the tests
and productivity strategy.

Still according to Veenendaal et Dekkers (1999), the
greatest benefit from TPA is in managing to gather factors

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

15

that influence the specific effort of one of the stages of the
development process in a systematic way, producing more
accurate results. Furthermore, it allows evaluating the test
effort per activity and takes into consideration the stages of
planning and control that are essential to any project success
and should be considered in effort estimation techniques.

This TPA technique can be considered complex and difficult
for use and interpretation. There are several variables such
as system size in function points, considering also the quality
characteristics to be tested dynamically, dynamic or static
testing team productivity, so that their values are defined
through analysis of the many factors that composed them
(Lopes et Nelson, 2008).

According to Bastos et al. (2007), TPA considers as the
basis for its analysis the size of the system to be tested
from the information gathered along with the development
team. In the definition and calculation of the number of
testing hours, the system size in function points is the initial
calculation base in these estimations. The tests are also
affected by the following factors:

a. The degree of the test process complexity. By this,
we mean to say that very complex systems tend
to consume more testing hours than the simpler
ones, as expected.

b. The quality level intended to be reached with
the tests. Evidently, the requirement of very high
quality levels will demand more test effort. There
are cases of financial systems, for example, that
should be failure-free, or have a near-zero failure
rate prediction when entering production. In these
cases the test effort will tend to be bigger.

c. The degree of user involvement with the tests.
The more users get involved in the test activity, or
validation, the better results are achieved and, very
often, the less will be the testing effort.

d. The interfaces that the functions under test have
as files. The bigger the number of files involved
in a test case, for example, the more difficult will
be to test the system or software. If the test case,
for example, maintains only one file, testing it and
assessing the results achieved will be much easier.

e. The quality of the system under test (the
defect recurrence cycle). When the system has
development or design defects, certainly the work
of testing will be more onerous. In this case, it is
true the precept that the cost of defects grow in
geometric progression the later they are detected.
Production defects are much more expensive than
project defects.

Figure 3. Models of test execution.
Source: Adapted from Patel et al. (2001)

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

16

f. The coverage level expected with the tests. The
system requirements will usually establish the
coverage level required by the tests. For example,
to some systems, the load or performance tests are
indispensable, whereas to others, where the access
level is too low, such tests can even be dismissed.

g. The test team’s experience and productivity
(measured through historical indicators). It
is evident that the test team’s quality and
management are linked to the effort spent to
run the tests. There are organizations that use
historical bases to estimate and assess their testing
process. This information also serves as a base for
measuring the team’s productivity.

h. Automation degree of the tests. The automation
tools allow for higher levels of productivity, as
they facilitate repeating tests already run, as
many times as necessary, in addition to facilitating
documentation of test cases.

i. The test environment quality, including its ability
to simulate the production environment. The test
environment should be really close or equal to the
production environment, because in this way many
compatibility problems between the environments
are prevented. This will be especially important to
stress, load and performance tests.

j. The system documentation quality and, especially,
requirements. As the requirements are the basis
for the system development, we will have a
process in chain, as the test only shows defects
occurrences, however it does not solve the
problem resulting from poorly designed project.
In this case, the correction costs tend to be very
high, as well as the test effort will be much more.
Using test point analysis will allow the test process
to have a measurement of its own to determine its
size, what is justified when the test is treated as
an independent activity, keeping a connection with
the system size in function points.

3.7. Estimate produced from historical bases of test projects

According to Lopes et Nelson (2008), the effort estimated
through a historical base is based on the collection of
information stored in the projects databases, where the
business requirements are the basic information for the
estimations. In order for the process of estimating the
effort to be actually consistent, it is necessary that all the
historical data are extremely organized and systematic, so
that the figures produced have the most possible accuracy.
To Matieli (2014), this technique is positive, because it
produces a history of projects inside the organization, so that
it is possible to make inquiries of analog projects in order to

make the most consistent estimations, produce statistical
data. However, in order for the process of estimating effort
to be really consistent, it is necessary that the historical data
records are extremely organized and systematic so that the
figures produced have the most possible accuracy.

The creation of historical bases for the projects
estimations is a source for elaborating indicators (SOUZA et
al., 2010).

3.8. Estimate produced from Simple Estimate Test (SET)

According to Matieli (2014), the Simple Estimate Test (SET)
was proposed according to the combination of technical and
scientific literature, with the distribution of answers from
the empirical investigation applied along with experts in the
field of software testing.

Still to Matieli (2014), the technique can be used to
estimate functional tests taking into consideration variables
such as test cases definition, test cases complexities and
its respective classifications, hours of test cases planning,
hours of test cases execution, hours of retest, and hours
of test management, besides the schedule variable. These
variables for composing the model, its respective weights
and percentages were defined after a semantic analysis of
the answers to a questionnaire applied to experts in large
multinational company of the telecommunication sector. As
illustrated in Figure 4.

The option for the value range rather than fixed values was
present, considering that projects of different complexities
demand different times for the activity concerned.

In order to estimate using the technique, it is necessary
that the professional knows how the system works. It is
seen in the SET that the incorporation of the professional
reasonableness concerns the project and the organizational
environment specificities, besides technical knowledge in
defining and classifying the test cases, are requirements that
determine a good estimation of the complexities shown in
Table 2.

Table 2. Criteria for the complexities classification

Complexity Definition Weight

Low
Little user interaction with the program, not
much processing time to produce a piece of
data.

1

Average
User reasonable interaction with the program,
normally in the same interface, slightly long
processing and more than one verification.

2

High
More than one different user interaction with
the program, normally in different interfaces,
processing and results validation are long.

3

Very High
Users need to interact a lot with the program
in more than two interfaces and validate a big
number (five or more) of results.

4

Source: Matieli (2014)

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

17

From test cases definition and classification, the planning,
execution, retest, management and schedule hours are
calculated, achieving final estimation value in hours.

To some critics, this technique may be considered difficult
to use and interpret, because it is necessary to understand
the project complexity functionally in order to be able to
identify within each range the most appropriate value and
thus achieve a final value in hours. Another important point
is that the proposed technique needs to be applied in actual
business projects (MATIELI, 2014).

4. CONCLUSION AND FUTURE SUGGESTIONS

During the study, it was seen that some techniques exist
in the literature; however, none is dominant, better or
recommendable, because there is no dominant, better or
more dominant technique either in the literature, or in the
practices of big organizations. In practice, the companies
invent their own methods, mostly with no technical or
scientific foundation.

In this sense, this work provides a summarized overview
of the main techniques developed for dealing with the
issues inherent to the evident empiricism in marketing
practices, representing a relevant input for both researchers
and practitioners who work or wish to work in this field.

As suggestions for further studies, we recommend
selecting some existing techniques in the literature and their
application in actual corporate projects, in order to make a
comparative assessment concerning the degree of accuracy
of each test for specific situations.

REFERENCES

Aranha, E.; Borba, P. (2007). An estimation model for
test execution effort. Available in: <http://www.academia.
edu/8455490/An_Estimation_Model_for_Test_ Execution_
Effort> Accessed: January 22, 2015.

Bastos, A.; Rios, E.; Cristalli, R.; Moreira, T. (2007). Base
de Conhecimento em Teste de Software. Martins, São Paulo.

Christodoulakis, D.; Panziou, G. (1990) Modelling software
reliability prediction with optimal estimation techniques,
University of Patras, Jan./Feb., vol. 32, No. 1.

Jiang, L.-X.; Han, W.-J.; Yan, C.-C., Shi, B.-Y. (2012). Research
on size estimation model for software system test based
on testing steps and its application. 2012 International
Conference on Computer Science and Information
Processing (CSIP), China, p. 1245 a 1248.

Lazic, L.; Mastorakis N. (2008). Cost Effective Software
Test Metrics. Wseas Transactions on Computers, 7(6), 599-
619.

Figure 4. SET – Simple Estimate Test
Source: Matieli (2014)

Brazilian Journal of Operations & Production Management
Volume 14, Número 1, 2017, pp. 10-18
DOI: 10.14488/BJOPM.2017.v14.n1.a2

18

Liou, J. (2010). On Software Test Estimate and
Requirement Tracking. 19th International Conference on
Software Engineering and Data Engineering, USA, pp. 57-62.

Lopes, F. A.; Nelson, M. A. V. (2008). Análise das Técnicas
de Estimativas de Esforço para o Processo de Teste de
Software. Available in: <http://ebts2008.cesar.org.br/
artigos/EBTS2008-Analise_das_Tecnicas_Estimativas_de_
Esforco.pdf> Accessed: February 15, 2013

Matieli, L. V. (2014). Proposta metodológica para
elaboração orçamentária de testes de software. Dissertação
(Mestrado em Sistemas de Gestão). Niterói: Universidade
Federal Fluminense. Orientador: Prof. Fernando Oliveira de
Araujo.

Mastorakis, N.; Mladenov, V.; Kontargyri, V. T. (2009).
Proceedings of the European Computing Conference.
Springer, Grécia.

Nageswaran S. (2001). Test Effort Estimation Using Use
Case Points (UCP). Available in: <http://www.bfpug.com.
br/Artigos/UCP/Nageswaran-Test_Effort_Estimation_Using_
UCP.pdf> Accessed: January 06, 2015.

Nguyen, V.; Pham, V.; Lam, V. (2013). qEstimation: A
Process for Estimating Size and Effort of Software Testing.
International Conference on Software and Systems Process,
USA, pp. 20-28.

Patel, N.; Govindrajan, M.; Maharana, S.; Ramdas, S.
(2001). Test Case Point Analysis - Cognizant Technology
Solutions. Available in: <www.stickyminds.com/getfile.as
p?ot=XML&id=2566&fn=XUS373692file1.pdf> Accessed:
January 06, 2015.

Pressman, R. S. (2005). Software Enginnering: a
practitioner’s approach. McGraw-Hill, USA.

Srinivasan, K.; Fisher, D. (1995). Machine Learning
Approaches to Estimating Software Development Effort.
IEEE Transactions on Software Engineering, v. 21, n.2, p.126-
137.

Souza, P. P. de; Barbosa, M. W.; Silva, A. R. da (2010).
Estimativa de Esforço de Teste no Auxílio da Garantia da
Qualidade de Software. Available in: <http://www.spinsp.
org.br/artigos/Revista_PBQP_2_Edi%C3%A7%C3%A3o.pdf>
Accessed> January 07, 2015.

Tronto, I. F. de B.; Silva, J. D. S. da; Sant’anna, N. (2008). An
Investigation of Artificial Neural Networks Based Prediction
Systems in Software Project Management. The Journal of
Systems and Software, 81, 356–367.

Veenendaal, E.V.; Dekkers, T. (1999). Test point analysis:
a method for test estimation. Project Control for Software
Quality, Editors, Rob Kusters, Adrian Cowderoy, Fred
Heemstra and Erik van Veenendaal. Shaker Publishing.

Zhou, B.; Okamura, H.; Dohi T. (2013). Brief Contributions:
Enhancing Performance of Random Testing through
Markov Chain Monte Carlo Methods, IEEE Transactions On
Computers, 62(1), 186-192.

Zhu, X.; Zhou, B.; Hou, L.; Chen, J.; Chen, L. (2008). An
Experience-Based Approach for Test Execution Effort
Estimation. The 9th International Conference for Young
Computer Scientists. China.

