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We propose a single-item inventory model for a two-echelon periodic-review system made up of a warehouse 
and N retailers. The warehouse adopts an interval between reviews that is an integer multiple of the interval used in the 
retailers. Unlike in other models in the literature, the retailers carry out reviews at equal, synchronized intervals, and orders 
may be partially met by the warehouse. A methodology for breaking the system down into N + 1 facilities that results in a 
univariate convex cost function is proposed. This allows a golden-section search algorithm to be developed that minimizes 
total system cost while meeting the retail service level. The effectiveness of the proposed model is confirmed in a system 
with three retailers and a warehouse in which the movement of one item with normal retail demand is simulated in different 
situations. The retail service level achieved with the model is satisfactory. However, the greater the differences between the 
demand variance at each retailer, the more the service level at those retailers with greater variance fall short of the target 
while the service level at retailers with smaller variance exceeds the target.

Keywords: inventory model, warehouse, service level, retail. 

Abstract

INTRODUCTION

Multi-echelon inventory systems have been the subject 
of study for the past four decades. Interest in this type of 
system has arisen from, among other factors, the need to 
make the supply-chain network more efficient. To achieve 
this objective, it is essential to reduce inventory costs 
while maintaining an acceptable service level. It is against 
this background that this article describes a proposal for 
optimizing a two-echelon inventory model in a system like 
that shown in Figure 1.

  Figure 1 – Two-echelon system  

Figure 1 represents the movement of an item in a system 
made up of a warehouse supplying N retailers, where all 
the stockpoints (warehouse and retailers) adopt a policy of 
periodic inventory reviews. The review interval is the same 
in all the retailers, while in the warehouse the review interval 
used is a whole multiple of the interval in the retailers. The 
replenishment policy adopted at the stockpoints involves 
placing an order at each review interval T to reach the 
order-up-to level S. The review intervals in the retailers are 
equal and synchronized. Consequently, orders placed by the 
retailers reach the warehouse at the same time. 

The system is centralized, i.e., all the information about 
demand and inventory levels in the retailers is shared with 
the warehouse. This system differs from others described 
in the literature in that the review intervals for the retailers 
and warehouse differ, the orders arrive at the warehouse 
simultaneously and orders may be only partially met when 
there is insufficient inventory in the warehouse.

Heijden (1992) proposed a system similar to that 
described here but which used different review interval at 
retailers so that orders arrived at the warehouse at different 
times and were served on a FIFO (first-in-first-out) basis. 
Heijden (1992)  estimated mean inventory, service level 
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and order delay, all as a function of pre-defined maximum 
inventory levels S at each stockpoint. These estimates were 
validated by simulation. In the model proposed by Heijden 
(1992), various values of S were used until the estimated 
variables reached acceptable levels. The solution is 
therefore based on trial and error, which does not guarantee 
an optimal result.

Although Heijden’s (1992) approach was a general one, 
it is not applicable to the problem studied here: firstly, 
using Heijden’s approach, orders can only be met in full, 
unlike what happens in practice, where partial deliveries are 
common; and secondly, Heijden assumes that all orders are 
met by the warehouse on a FIFO basis, which does not apply 
when orders arrive simultaneously.

Another similar system found in the literature was 
studied by Heijden (2000). In this case the stockpoints also 
used a periodic review, but the system could have multiple 
echelons, i.e., it constituted a supply chain. Heijden (2000) 
gives approximate equations that are a function of order-up-
to-levels adopted at each stockpoint so that mean inventory 
levels and the retail service level can be estimated. The 
objective is to minimize system cost and guarantee the 
retail service level. To do this, Heijden (2000) gives a 
search algorithm. Despite the similarity with the system 
studied here, this solution is also not applicable here as for 
Heijden (2000) all the stockpoints in the network have the 
same review interval and orders are synchronized in all the 
stockpoints. 

Recently, Chu  et Shen (2010) described an approximate 
solution for safety stock at all the stockpoints in a two-
echelon periodic-review system. In their model, the ratio 
between review intervals at the warehouse and at retailers 
is limited to a power of two, orders are not synchronized 
and the service level for all retailers (and the warehouse) is 
defined in advance. 

Advances in information technology have made possible 
the development of multiechelon inventory models that 
take into account the availability of real-time information 
[Cachon  et Fisher (2000); Özer (2003); Axsäter  et Marklund 
(2008); Bakal, et. al,. (2011); Howard  et Marklund (2011)]. 
In line with this trend, Wang (2013)  pointed a solution for 
the system described in this article that assumes that the 
warehouse allocates stock to retailers as a function of the 
real-time stock level at each retailer. Wang assumes that the 
retailers face a Poisson demand and describes an algorithm 
to jointly optimize the review interval and replenishment 
levels at all stockpoints. The algorithm requires considerable 
computational effort except when the average demand and 
number of retailers are small. 

Hence, to our knowledge there is no other solution in the 
literature for the model proposed here. This is an important 
gap in multi-echelon inventory theory.

The aim of the model we describe is to define the order-
up-to-level in all the stockpoints in accordance with a 
policy to be described so that total system inventory cost 
is minimized and the service level objective is met at the 
retailers. The service level used here is the fill rate (the 
fraction of orders met from inventory on hand). This article 
makes two main contributions: firstly, we develop a model 
and describe an optimization algorithm for this model; 
and secondly, we develop a methodology for determining 
effective lead time―defined as the sum of lead time plus 
mean order delay caused by shortages at the warehouse―
so that each retailer can be treated as an isolated problem.

A simulation was performed to observe the service level 
for an item with normal demand in a system with three 
retailers using the solution to the proposed model as order-
up-to-levels. The resulting service levels were close to the 
targets that had been set. However, as the differences in 
retail demand variances increase significantly, the service 
level at retailers with greater demand variance tends to fall 
below target.

The rest of this article is organized as follows: The section 
RESEARCH METHODOLOGY discusses the methodology 
used. The section DESCRIPTION OF THE MODEL describes 
the inventory policy and the overall formulation of the 
model. The section FORMULATION FOR NORMAL DEMAND 
gives the formulation for a system with normal demand in 
the retailers and warehouse. This section also addresses 
a number of issues related to the cost function and the 
methodology for optimizing this. The section NUMERICAL 
ILLUSTRATION gives a numerical example to illustrate 
how the model is applied. The section SIMULATION gives 
the results of the simulations to test the solution to the 
algorithm in three different situations. The conclusions are 
presented in the section CONCLUSIONS.

RESEARCH METHODOLOGY

The aim of this article is to describe an inventory model for 
a two-echelon system (warehouse and retailers), a common 
type of inventory system in the retail sector. To this end, a 
literature review was carried out to find solutions for the 
proposed problem. As this failed to identify any solutions, 
a solution had to be developed based on the theoretical 
framework investigated.

The complexity of multi-echelon inventory systems lies in 
the direct influence that inventory decisions (replenishment 
parameters) in one echelon have on others, suggesting that 
the solution should be defined jointly for all the stockpoints 
in the system, which is very often impracticable. A n 
alternative to reduce the complexity of these models is to 
define an element that decomposes the system into isolated 
stockpoints.
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The principle of decomposition of the system was used 
here and involved the development of a methodology to 
determine the effective time between an order being placed 
with the warehouse and the time the order is received at 
the retailer. This interval was called the effective lead time 
and is directly affected by the order-up-to-level adopted at 
the warehouse. Once the expected effective lead time is 
determined, the system can be decomposed into isolated 
stockpoints.

To obtain an optimal solution for the model proposed 
here a golden section search algorithm was used. This was 
possible because the cost function for inventory in the 
system is convex and is solely a function of the order-up-to-
level in the warehouse. The effectiveness of the proposed 
formulation was tested in a simulation with one item with 
normal demand in a two-echelon system consisting of a 
warehouse and three retailers. 

DESCRIPTION OF THE MODEL 

In the system shown in Figure 1 the lead times at the 

warehouse and retailers ( 0L  and iL  respectively) are 
considered constant. The external supplier always has 
sufficient capacity to supply the warehouse, a condition 

known as infinite capacity. Items can be stocked at all the 
stockpoints, and there are no constraints on inventory 
capacity or transportation. Demands in the retailers are 
random, identically distributed, independent variables. 
Retailer i must serve the end customer with a service level 
βi (a management target), which in this case represents the 
fraction of demand promptly met from in-retailer inventory.

At the end of each review interval 0T  the warehouse 

places an order with the external supplier at time 0t  to 

reach the order-up-to level 0S . The interval T is the same 
and synchronized in all the retailers, and at each review (at 
time t) retailer i places an order with the warehouse to reach 
its order-up-to level Si. The orders placed with the warehouse 
by the retailers can be partially met and the items that could 
not be supplied are sent as soon as inventory is available. 
The holding cost in the system is charged at the end of each 
interval T. 

Figure 2 illustrates the changes in inventory levels for an 

item in the warehouse and in a particular retailer i . In this 

case TT 20 = . 

Si

T

S0

warehouse

Retailer i

T0=2T
L0

Li

Review

Replenishment

Inventory level

Time

Shortages

Shortages

t

t0

Time

Figure 2 – Inventory level at the warehouse and at retailer i  for TT 20 =

Basic Notation 

N - number of retailers;

T  - review interval at retailers. The same at all the retailers; 

m  - total number of reviews in a warehouse replenishment cycle;
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0T  - Review interval at the warehouse, restricted to 

mTT =0 , where m  is a positive integer;

iµ  - mean demand at retailer i per unit time;

2
iσ  - mean demand variance at retailer i per unit time;

0,hhi  - cost of holding an item in inventory per unit time 

at retailers and at the warehouse during the interval T, 

respectively;

0, LLi  - lead times at retailer i  and at the warehouse, 
respectively;

0, SSi  - order-up-to levels at retailer i and the 
warehouse, respectively;

( )aDi  - demand at retailer i  during an interval [ )a,0 ;

( )aD0  - demand at the warehouse during an interval  

[ )a,0 ;

( ) { }0,max xx =+ ; ( ) { }0,max xx −=− . 

Determining Mean Inventory in the warehouse and in each 
Retailer

The mean inventory level in the warehouse, as well as in 
each retailer i, is used to calculate the expected holding cost 
in each of these stockpoints. The mean desired inventory 
level is the inventory present in a replenishment cycle, which 
is defined as the interval between the time an order arrives 
and the instant immediately before the arrival of the next 
order. Inventory levels in retailer i at these two instants are, 

respectively: ( )( )iii LDS −  and ( )( )TLDS iii +− . Because 
inventory level can be either positive (inventory available) or 
negative (inventory not available), only the positive part of 
these levels should be used to calculate the mean available 
inventory in retailer i, which is given by

( )( ) ( )( )( ) 2++ +−+−= TLDSELDSEI iiiiiii  (1)

where ( )( )+− iii LDSE  and ( )( )++− TLDSE iii  are 
the expected values of available inventory at the beginning 
and end of the retailer replenishment cycle.

Mean available inventory level at the warehouse is 
calculated in the same way as mean inventory level at 
retailers. However, it should be noted that a replenishment 

cycle 0T  contains m  cycles T  and that because of the 
policy adopted, the inventory level at the warehouse only 
changes when there are reviews at the retailers, i.e., at 
intervals of T (see Figure 2). Consequently, the expected 
available inventory before the next replenishment at the 

warehouse is given by ( )( )( )+−+− TmLDSE 1000 , 
which is constant until the next replenishment. The expected 
available inventory immediately after replenishment is 

given by ( )( )+− 000 LDSE . Hence, mean inventory at the 
warehouse is given by

( )( ) ( )( )( )( ) 210000000
++ −+−+−= TmLDSELDSEI      (2)

Allocation of Shortages to Retailers

Shortages at the warehouse cause delays in deliveries 
to retailers, which in this case have to wait longer than Li 
to receive the items they ordered. Hence, shortages at the 
warehouse allocated to retailer i are directly related to 

the effective lead time i  (discussed in detail in the next 
section), making it necessary to know the expected number 
of shortages allocated to each retailer i at each review.   

As previously mentioned, changes in inventory levels at 
the warehouse only occur when reviews are performed at 
retailers, so shortages at the warehouse are reflected in the 
negative part of the inventory level (inventory not available) 
on those occasions. Therefore, the expected number of 
shortages at the warehouse up to the jth review at retailer 
inventory points is given by

( )( ) { }1,...,1000 −∈+− − mjjTLDSE , (3) 

where j = 0 corresponds to the first review at retailer 
stockpoints in a warehouse replenishment cycle and 

1−= mj  corresponds to the last review. 

For a given interval between two reviews at retailer 
stockpoints, the expected number of shortages 
at the CD at the beginning and end of the interval 

are, respectively, ( )( )−+− jTLDSE 000  and 

( )( )( )−−+− TjLDSE 1000 . The expected number 
of shortages at the jth review at retailer stockpoints is 
the difference between these expected values. The only 
exception is for the first review at retailer stockpoints (          ), 
which coincides with replenishment at the warehouse; in 
this case the expected number of shortages at this review is 

0T mT=

( )( ) ( )( )( ) 2i i i i i i iI E S D L E S D L T
+ +

= − + − +

( )( ) { }0 0 0 1,..., 1E S D L jT j m
−

− + ∈ −

( )( )0 0 0E S D L jT
−

− +

0j =
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given by ( )( )−− 000 LDSE . Hence, the shortages at each 
review at retailer stockpoints are given by

( )( ) ( )( )( ) { }
( )( ) 0

1,...,11

00000

0000000

=−=

−∈−+−−+−=
−

−−

jforLDSEB

mjTjLDSEjTLDSEB j  
 

we know that for any non-negative value of a ,

( )( ) ( )( )+− −=− 0000 SaDEaDSE . Therefore

( )( ) ( )( )( ) { }
( )( ) 0

1,...,11

00000

0000000

=−=

−∈−−+−−+=
+

++

jforSLDEB

mjSTjLDESjTLDEB j   

(4)

Thus, the expected number of shortages allocated to 
retailer i at the jth review is given by

00 >= iforBpB jiij     
(5)

where ip is the fraction of shortages allocated to retailer 

i  when there is no inventory available at the warehouse. 
In such situations the number of items in each order that 
will be supplied must be defined (a procedure known as 
rationing). Rationing can also be interpreted as the act of 
allocating shortages at the warehouse to retailers, i.e., it 

corresponds to the fraction ip  ( 10 ≤≤ ip ) of each order 

that will not be met at retailer i , such that 1
1

=∑ =

N

i ip .    

Determining ip  is very important for system performance 
as it affects not only the probability of shortages at retailer 
i, but also the level of service at the retailer. In addition, 
rationing may sometimes be performed in such a way that 
the number of shortages allocated to retailer i is greater 
than the order the retailer placed with the warehouse, a 
phenomenon known as imbalance, or negative inventory 
allocation. 

Some of the better-known proposals for determining the 

fraction ip  include Consistent Appropriate Share (CAS) (De 
Kok, 1990), Fair Share (FS) (Eppen  et Schrage, 1981) and 
Balanced Rationing (BR) (Heijden, 1997). These approaches 
differ in their objectives: in CAS the aim is to maintain the 
same probability of a shortage at all the retailers, while in 
FS the procedure prioritizes the service-level target and in 
BR negative allocation is minimized. Many other proposals 
based on these approaches have since appeared. Heijden  et 

al., (1997) proposed a solution for ip  that was independent 

of iS , unlike other proposals, which determine ip  and iS  
simultaneously. In their approach, only the variance in 
retailer demand influences rationing, so that:

 
∑ =

+= N

j j

i
i N

p
1

2

2

22
1

σ
σ

.  

(6)

According to Heijden  et al.,(2000), the heuristic in 
Equation 6 was tested in a simulation together with CAS, FS 
and BR and had the best performance in terms of meeting 
the service level in retailers. Because of this, the fractions 
obtained using Equation 6 are used in this article for the 
rationing rule; in other words, they are used to allocated 
shortages at the warehouse to retailers.

Effective Retail Lead Time and Decomposition of the System

In a two-echelon inventory system the movement of 
inventory at retailers is influenced by the order-up-to-levels 
used at the warehouse. The basic principle when modeling 
a two-echelon inventory system involves finding a way of 
breaking the system down into N stockpoints that can be 
treated separately. One way of doing this is to determine the 

effective lead time i . The effective lead time is influenced 
by the order-up-to-level at the warehouse through the delay 
in deliveries caused by shortages at the warehouse. Hence, 

once i  has been determined, retailer i  can be treated 
separately, as the influence of the order-up-to-level at the 
warehouse is being taken into account implicitly.

As shortages at the warehouse are a random variable, the 
effective lead time is also random and its expected value is 
calculated by adding lead time to mean order delay:

iii wL += ,      
(7)    

where iw  is the expected order delay at retailer i . 

Because of the supply policy adopted, replenishments 
occur at fixed points in time. It follows that order delay is a 
discrete random variable.

Hence, if there are shortages in the first review at retailer 
i at time t (see Figure 2), the items that are out of inventory 

will take a total time TLi 2+  to be delivered, i.e., they 

( )( ) ( )( )( ) { }

( )( )
0 0 0 0 0 0 0

00 0 0 0

1 1,..., 1

0

jB E S D L jT E S D L j T j m

B E S D L for j

−−

−

= − + − − + − ∈ −

= − =

( )( ) ( )( )( ) { }

( )( )
0 0 0 0 0 0 0

00 0 0 0

1 1,..., 1

0

jB E D L jT S E D L j T S j m

B E D L S for j

++

+

= + − − + − − ∈ −

= − =

0 0ij i jB p B for i= >
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will arrive with a delay of T2 . For shortages in the second 

review ( Tt + ), this time is reduced to TLi + , i.e., a delay 
of T . It can be concluded that the possible delay values 

are given by ( )Tjm − , where [ ]1,..,1,0 −∈ mj , which 
represents the delay for the items that are out of inventory 

in review j  at retailer i . 

Delays only occur when there are shortages at the 
warehouse. When this happens, of all the items requested 

from the warehouse in a cycle 0T  only ijB  will be out of 

inventory at retailer i  in review j . Hence, the fraction of 
demand that cannot be met at the jth review is given by the 

fraction mTB iij µ , where jiij BpB 0=  as in Equation 5 

and iµ  is the expected retail demand per unit time.

The expected delay iw  is therefore given by

( )[ ]∑ −

=
−=

1

0

m

j iiji mTBTjmw µ .   
 (8)

Once i  is known (Equation 7), the system can be treated 

as 1+N  independent systems by using i  instead of iL . 
The mean inventory at retailer i calculated in Equation 1 can 
then be rewritten as 

( )( ) ( )( )( ) 2++ +−+−= TDSEDSEI iiiiiii   . 
  

We know that for any non-negative value a ,

( )( ) ( )( )−+ −=− iiii SaDEaDSE . Therefore

( )( ) ( )( )( ) 2−− −++−= iiiiiii STDESDEI  , 
  

Furthermore,

 ( )( ) ( )( ) ( )( )iiiiii SaDESaDESaDE −−−=− +− , 

which when substituted in the previous expression 
becomes

( )( ) ( )( ) ( )( ) ( )( )( ) 2iiiiiiiiiiiii STDESTDESDESDEI −+−−++−−−= ++


 

taking into account the result ( )( ) iiii SaSaDE −=− µ  
in the previous expression we have 

( )( ) ( )( ) ( )( ) 222 TSSTDESDEI iiiiiiiiii +−+−++−= ++
 µ  

 (9)

 

Likewise, the same approach can be used to rewrite the 
mean inventory at the warehouse (Equation 2), giving

( )( ) ( )( )( ) ( )( )( ) 21221 0000000000 TmLSSTmLDESLDEI −+−+−−++−= ++ µ  
(10)

The retail service level, here represented by iβ , is 
the fraction of demand that is promptly met (fill rate). 

iβ  should also take into account the effective lead time 

i . To calculate the fill rate, the shortages in a retail 
replenishment cycle must be known, which in this case 
correspond to the difference between the expected number 
of shortages at the beginning and end of the cycle, i.e., 

( )( )−− iii DSE   and ( )( )−+− TDSE iii  , respectively. 

The expected demand in a cycle is given by Tiµ . Hence, 
the fraction of demand that is not met is given by

( )( ) ( )( )( ) TDSETDSE iiiiiii µ−− −−+−   and the 
fraction that is promptly met is given by

( )( ) ( )( )( ) TDSETDSE iiiiiiii µβ −− −−+−−= 1  
   

which, as ( )( ) ( )( )+− −=− iiii SaDEaDSE , can be 
rewritten 

( )( ) ( )( )( ) TSDESTDE iiiiiiii µβ ++ −−−+−= 1   
  (11)

FORMULATION FOR NORMAL DEMAND

A normal distribution is a common choice for modeling 
demands, particularly when the demand is high.  Demanding 
for an item is expressed per interval of time (e.g., per week) 
and is in turn made up of demands expressed per another, 
smaller time (e.g., days). According to the central limit 
theorem, the sum of various independent random variables 
has an approximately normal distribution, justifying the use 
of this distribution in many situations. 

According to Axsäter (2006), for demand to approximate 
to a normal distribution, the coefficient of variation 

µσ=cv  must be reasonably less than one, which 
reduces the probability of the distribution containing 
negative demand values. Silver  et al.,(1998) recommend 

( )1

0

m
i ij ij

w m j T B mTµ−

=
= −  ∑

ijB

ij iB mTµ 0ij i jB p B=

cv σ µ=
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that a normal distribution  should be used when cv ≤ 0.5.    

Determining Inventory Level for Normal Demand

Let X  be a random variable with mean xµ , standard 

deviation xσ  and density function ( )xf . Zipkin (2000) 

defines the first-order loss for a particular value S  to be 

( ) ( ) ( ) ( )SFdyyfSySXE
S

1=−=− ∫
∞+

. According to 

Zipkin (2000) the loss ( )SF1  for a standardized normal 
distribution can be expressed as

( ) ( )zSF x
11 Φ=σ ,     

(12)        

where ( )z1Φ  is given by

( ) ( ) ( )[ ]zzzz Φ−−=Φ 11 φ ,    
(13)

and ( )z1Φ  is the first-order loss function, ( )zφ  the density 

function and ( )zΦ  the cumulative distribution function 
of the standardized normal distribution, all defined in 

( ) xxSz σµ−= .

Hence, we can rewrite Equations, 4, 9, 10 and 11 
taking into consideration the loss function given by 

( ) ( )zaSaDE 1)( Φ=− + σ  for any non-negative value 

of a, where ( ) aaSz σµ−= .

Thus, Equation 4 becomes

( ) ( ) ( ) { }
( ) 0

1,...,11

00
1

00

00
1

00
1

0

=Φ=

−∈−+Φ−+Φ=

jforLzB

mjTjLzjTLzB j

σ

σσ  
 

or

( ) ( )( ) { }
( ) 0

1,...,11

00
1

00

000
1

0

=Φ=

−∈−+−+Φ=

jforLzB

mjTjLjTLzB j

σ

σ
 

.                                                                         (14)

Equation 9 becomes

( ) ( ) ( )( ) 22211 TSzTzI iiiiiiii +−+Φ++Φ=  µσσ  
 

or

( ) ( ) ( )( ) 2221 TSTzI iiiiiii +−+++Φ=  µσ
.   (15)

Equation 10 becomes

( ) ( ) ( ) ( )( )( ) 21221 000
1

00
1

000 TmLSzTmLzLI −+−+Φ−++Φ= µσσ  
 

or

( ) ( )( ) ( )( )( ) 21221 000000
1

0 TmLSTmLLzI −+−+−++Φ= µσ  
 (16)

Equation 11 becomes

( ) ( )( ) TzTz iiiiii µσσβ 

111 Φ−+Φ−=   
 

or

( ) ( )( ) TTz iiiii µσβ  −+Φ−= 11 .  
 (17)

In the previous expressions, iµ  and iσ  represent the 
mean and standard deviation of the demand at retailer 

i  per unit time. Similarly, 0µ  and 0σ  are the mean and 
standard deviation of the demand at the warehouse, so that 

∑
=

=
N

i
i

1
0 µµ  and ∑

=

=
N

i
i

1

22
0 σσ .  

Cost Function and Optimization

The only cost considered in the cost function is the cost 
of holding inventory, which is charged at the end of each 
retail replenishment cycle, and the only other constraint is 
the retail service level, which must reach a defined target 

iβ . Let h1 and h0 be the cost of holding an item in inventory 
at a retailer and the warehouse, respectively, for the period 

T . The total cost of holding inventory in the system during 

this period is given by ∑ =
+=

N

i ii IhIhc
100 , where Īi  and 

Ī0 are given by Equations 15 and 16. 

We wish then to determine the order-up-to levels Si and 
S0 that meet the target retail service level at the lowest 
system cost. This constitutes a minimization problem. , 
 (18)

( ) ( ) ( ) ( )1

S
E X S y S f y dy F S

∞+− = − =∫

( ) ( ) ( ) { }
( )

1 1
0 0 0 0 0

1
00 0 0

1 1,..., 1

0
jB z L jT z L j T j m

B z L for j

σ σ

σ

= Φ + −Φ + − ∈ −

= Φ =

( ) ( )( ) { }

( )

1
0 0 0 0

1
00 0 0

1 1,..., 1

0

jB z L jT L j T j m

B z L for j

σ

σ

= Φ + − + − ∈ −

= Φ = (14)
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The cost c is a linear combination of mean available 
inventory 0I and iI . These available inventories are 
obtained from the expected available inventory values, 
which in this case are first-order loss functions of the 
normalized distribution. According to Axsäter (2006), loss 
functions are continuous, decreasing and convex. Hence, the 
objective function of Problem 18 is a linear combination of 
convex functions, which according to Bazaraa  et al., (2006) 
results in a convex function. 

The expression used to calculate the service level in 
Equation 17 is also convex as it uses the expected number 
of shortages obtained from the loss function. Thus for 

each pair ( )ii β  there is only one iS  that satisfies the 

constraint on Problem 18. This value of iS  can be found by 
using a search method with Equation 17, an example being 
the secant method.

In addition, the effective lead time i , which influences 

iS , is related to 0S  through the shortages jB0 . We 

conclude, therefore, that for every 0S  there is only one 

iS  that satisfies the constraint on the problem. Hence, the 

cost c  is a function of only 0S , as the values of iS  are a 
consequence of the constraint on the problem. 

The cost c is therefore convex and has only one argument. 
Although there is a number of constraints on Problem 
18, the characteristics of the cost function allowed an 
optimization algorithm based on the golden section method 
(first developed for problems without any constraints) to be 
used.

Optimization Algorithm
The algorithm developed here is based on the golden 

section algorithm (Bazaraa  et al., 2006). In this method a 
search interval is defined and convergence to the optimum 
occurs when the difference between two points being 
tested is less than a stopping criterion δ . In practice 0S  is a 
discrete variable, so it is reasonable that the smallest interval 

tested should have a minimum length equal to a unit, i.e.,  

( ) ( ) 12010 <−= kk SSδ  where k  is the iteration number and 

( ) ( )
kk SS 2010 and  the points tested in each iteration.

In addition, the golden section method is started from the 

extreme bounds of the search for 0S , which are described 
in Appendix A and given below: 

( ) ( ) ( )[ ]TmLTmLSTL 115 0000000 −++−+<<− µσµ  
 (19)

Following is the algorithm based on the golden section 
method:

Data: .,,,,,,,,,,, 00000 mhTLhTL iiiii σµβσµ
Do

( )TLA −= 00
1 µ ;

( ) ( )[ ]TmLTmLB 115 0000
1 −++−+= µσ ;

11 BA −=δ ; 1=k (iteration number);

Calculate the initial test points ( ) ( )
kk SS 2010 and  for 1=k

( ) ( )( )1111
10 618.01 ABAS −−+=  and ( ) ( )1111

20 618.0 ABAS −+=  

While 1>δ  do:

For each point ( ) ( ){ }kk SS 2010 ,  do:

Calculate the mean inventory at the warehouse ( )
kI 10  and 

( )
kI 20  as in Equation 16

For each review { }1,...,1,0 −∈ mj  do:

Calculate the shortages at the warehouse ( )
k

jB 10  and 

( )
k

jB 20  as in Equations 14   

end

for each retailer { }Ni ,...,2,1∈  do:

Determine the effective lead times ( )
k
i 1  and ( )

k
i 2  as in 

Equation 7   

( ) ( )( ) { }

0 0 1

1

min

s

1 1,2,...,

N
i ii

i i i i i

c h I h I

ubject to

z T T i Nσ µ β

=
= +

− Φ + − = ∈

∑

 

(18)

( ) ( ) ( )0 0 0 0 0 0 05 1 1L T S L m T L m Tµ σ µ− < < + − + + −   (19)
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With a search method, define ( )
k
iS 1  and ( )

k
iS 2  for iβ  in 

Equation 17

Calculate the mean inventory levels ( )
k
iI 1  and ( )

k
iI 2  as in 

Equation 15

end

Calculate the costs ( )
kc 1  and ( )

kc 2  as in Problem 18

If ( ( ) ( )
kk cc 21 > ) then

( )
kk SA 10

1 =+ ; kk BB =+1 ; ( ) ( )
kk SS 20

1
10 =+ ; 

( ) ( )1111
20 618,0 ++++ −+= kkkk ABAS ; 

( )
kcc 2min = , ( )

kSS 20
*
0 =  and ( )

k
ii SS 2

* = .

Or if ( ( ) ( )
kk cc 21 ≤ ) then

kk AA =+1 ; ( )
kk SB 20

1 =+ ; ( ) ( )
kk SS 10

1
20 =+ ; 

( ) ( )( )1111
10 618,01 ++++ −−+= kkkk ABAS ; 

( )
kcc 1min = , ( )

kSS 10
*
0 =  and ( )

k
ii SS 1

* = .

end

kk BA −=δ ; 1+= kk .

end

NUMERICAL ILLUSTRATION 

In this example the aim is to determine the order-up-
to levels for a particular product in a system with three 

retailers ( 3=N ) that carry out inventory reviews every 

day ( 1=T ). The warehouse checks inventory every three 

days ( 30 =T ) so that orders can be placed with the external 
supplier. The variance and mean for daily demand in each 

retailer are 23;27 2
11 == σµ ; 39;81 2

22 == σµ

31;54 2
33 == σµ . Other data for the problem: 

9.0;4;1;1;1 00 ===== iii hLhL β .  

In the proposed algorithm, a new set of values obtained 

from the points ( ) ( )
kk SS 2010 and  is generated at each 

iteration k . The values obtained in some of the iterations 

are shown in Table 1, where the reduction in cost *c with 

each iteration can be observed. The order-up-to level *
0S  

also decreases, causing the shortages at the warehouse to 
increase, which in turn leads to larger effective lead times 

i . Consequently, *
1S , *

2S  and *
3S  increase to meet the 

target service level 9.0=iβ .

At the end of the iterations a solution is found with a 

minimum cost 329.79$* Rc =  for order-up-to levels 

153*
0 =S , 106*

1 =S , 220*
2 =S  and 162*

3 =S . 

Table 1- Results of the iterations using the proposed algorithm

A B *
0S *

1S *
2S *

3S *c

It. 1 1,335.84      2,161.12 1,335.84          54.01          154.96          104.20 1,324.96

It. 4 315.29         510.08 315.29           72.43          177.97            124.75 395.64

It. 7 74.41         120.39 120.39                             115.84 232.38 173.33 332.25

Figure 3 shows the graphs of variables 321 ,, SSS and c 

for a variation [ ]72910S  using the data from the example 

described here. As expected, the increase in 0S  causes a 

reduction in order-up-to levels iS  as a consequence of the 
reduction in effective lead time. However, the reduction 

in i  is limited to the lead time iL  itself, and from this 

point on iS  remains constant even when 0S  continues to 
increase. The convex behavior of the cost function can also 
be observed. 

2
1 127; 23µ σ= = 2

2 281; 39µ σ= =
2

3 354; 31µ σ= =
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Figure 3 – Values of 1S , 2S , 3S  and c  for [ ]72910 ∈S .

SIMULATION

A simulation was performed to observe how the values 
*
iS  and *

0S  supplied by the proposed algorithm influence 
the behavior of the fill rate in relation to the defined target 

iβ . The MATLAB standard number generator was used for 
the simulation.
Three cases with different demands in the system described 
above were simulated. In each case 10,000 daily demands 
were generated, and the change in inventory levels in the 
system was a consequence of the order-up-to levels *

iS  and 
*
0S  produced by the proposed algorithm. Lastly, the service 

level was observed at each retailer. The results are shown 
in Table 2.

As can be seen from this table, the solution proposed 
by the algorithm produces a service level (fill rate) close to 
the defined target, particularly when the variances of the 
retail demands are similar. However, as the variances differ, 
the target is no longer reached (values in bold in Table 2). 
Because of the rationing rule in Equation 6, the retailers with 
greater demand variance have more shortages allocated 
by the warehouse, with a consequent reduction in fill rate 
compared with the defined target. For those stockpoints 
with smaller demand variance, the opposite happens and 
the service level is exceeded.

Table 2 – Results of the simulation

Retail demand Order-up-to levels Target Observed β (%)

Case 1 *
0S *

1S *
2S *

3S β 1β 2β 3β

271 =µ 222
1 =σ 75 79 80 80 80% 85.13 85.38 86.14

271 =µ 232
1 =σ 78 83 84 84 90% 91.24 91.56 91.97

271 =µ 242
1 =σ 80 86 87 88 95% 94.97 95.30 95.94

84    94 94 94 99% 98.83 98.94 99.01

1 27µ =

1 27µ =

1 27µ =

2
1 22σ =
2
1 23σ =
2
1 24σ =
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Case 2 *
0S *

1S *
2S *

3S β 1β 2β 3β

811 =µ 392
1 =σ 185 223 167 194 80% 80.25 88.59 82.86

542 =µ 312
2 =σ 190 231 173 201 90% 85.33 96.52 89.68

673 =µ 352
3 =σ 193 237 177 206 95% 89.37 98.44 94.17

196 247 186 215 99% 94.18 99.83 98.36

Case 3 *
0S *

1S *
2S *

3S β 1β 2β 3β

271 =µ 232
1 =σ 149 102 212 156 80% 99.32 78.21 83.68

812 =µ 392
2 =σ 153 106 220 162 90% 99.84 81.37 88.28

543 =µ 312
3 =σ 156 110 226 167 95% 99.97 84.58 92.13

160 116 235 175 99% 99.99 88.74 97.40

CONCLUSIONS

The simulation carried out here showed the effectiveness 
of the proposed model, which is an alternative solution 
for a common retail situation. Unlike other solutions in 
the literature, the model proposed here assumes that the 
review intervals at retailers are equal and synchronized and 
that retail orders can be partially fulfilled by the warehouse. 
The formulation proposed in this article assumes that the 
demand distributions in the retailers and warehouse are 
known. While a normal distribution was used here, the 
formulation can be used with other distributions, such as a 
standardized gamma distribution or a Poisson distribution, 

by writing the expected value ( )+− SaDE )( as was done 
for the normal distribution.

The cost function formulated for the system studied 
here is convex and for each order-up-to level used at the 
warehouse there is only one corresponding order-up-to 
level at each retailer that satisfies the service level target. 
Hence, in addition to being convex, the cost function has a 
single argument. These two characteristics allow a golden 
section search algorithm to be used to minimize the total 
system cost.

The effective lead time obtained using the proposed 
methodology allows the system being studied to be 
decomposed into N single-retailer problems by substituting 
the lead time by the effective lead time, thereby making 

calculation of iS  an isolated problem for each retailer. 

For the cases simulated here, the results in Table 2 show 
that when the solution produced by the proposed algorithm 
is used, the service level is close to the target value and 
in some cases exceeds it. However, as the differences in 

retail demand variances increase significantly, the service 
level at stockpoints with greater demand variance tends 
to fall below target. In contrast, in stockpoints with smaller 
demand variance the targets are exceeded. 
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APPENDIX A

As was seen in the optimization algorithm, an interval is defined for the variable 0S . To do this the upper and lower 

bounds for 0S  must be found. The metric chosen for this purpose was the fraction of demand not met by the warehouse 

in the interval mTT =0 .

The expected total number of shortages at the warehouse (the unmet demand) in an interval mT  is given by 

( )( )( )+−−+ 000 1 STmLDE , where the expected demand at the warehouse in the same interval is mT0µ . The fraction 
of demand not promptly met by the warehouse is therefore given by:

( )( )( )
mT

STmLDEf i

0

00 1
µ

+−−+
=  .    

Clearly, 10 ≤≤ f , and since ( ) ( )zaSaDE 1
000 )( Φ=− + σ  we have:

( ) ( )( )[ ] ( ){ }
1

111
0

0

00000
1

00 ≤
−+−+−Φ−+

≤
mT

TmLTmLSTmL
µ

σµσ
 (A.1)

Considering only the upper bound in (A.1) gives:

 
( ) ( )( )[ ] ( ){ }

1
111

0

00000
1

00 ≤
−+−+−Φ−+

mT
TmLTmLSTmL

µ
σµσ

,  

or:

( )( )[ ] ( ){ }
( ) 00

0
00000

1

1
11

σ
µσµ

TmL
mTTmLTmLS
−+

≤−+−+−Φ .  (A.2)

In Equation B.2, mT0µ  and ( ) 00 1 σTmL −+  are the mean and standard deviation of the demand at the warehouse 

in an interval mT . This demand has a normal distribution, and according to Axsäter (2006), for demand to approximate 

to a normal distribution the quotient  µσ  must be less than 1. Silver,  et al.,(1998) recommend that 5.0<µσ  , i.e., 

2>σµ . Hence, the right-hand side of Inequality A.2 is always greater than or equal to 2. For 2≥z , the approximation 

( ) zz =−Φ1 can be used. Hence, for Inequality A.2 to be satisfied:

( )( )[ ] ( )
( ) 00

0
00000 1

11
σ

µσµ
TmL

mTTmLTmLS
−+

−≥−+−+−    

After some algebraic manipulation we get:

 ( )TLS −≥ 000 µ       (A.3)

0T mT=

mT

0mTµ

( )( )( )0 0

0

1 iE D L m T S
f

mTµ

+
+ − −

=

( ) ( )( ) ( ){ }1
0 0 0 0 0 0 0

0

1 1 1
0 1

L m T S L m T L m T

mT

σ µ σ

µ

 + − Φ − + − + − ≤ ≤

( ) ( )( ) ( ){ }1
0 0 0 0 0 0 0

0

1 1 1
1,

L m T S L m T L m T

mT

σ µ σ

µ

 + − Φ − + − + −  ≤

( )( ) ( ){ } ( )
1 0

0 0 0 0 0
0 0

1 1
1

mTS L m T L m T
L m T

µµ σ
σ

 Φ − + − + − ≤  + −

0mTµ
mT

( )( ) ( )
( )

0
0 0 0 0 0

0 0

1 1
1

mTS L m T L m T
L m T

µµ σ
σ

 − + − + − ≥ −  + −
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Considering the lower bound in Expression A.1 we get:

( ) ( )( )[ ] ( ){ }
mT

TmLTmLSTmL

0

00000
1

00 111
0

µ
σµσ −+−+−Φ−+

≤   

or:

( )( )[ ] ( ){ } 011 00000
1 ≥−+−+−Φ σµ TmLTmLS .   (A.4)

For 5>z , the approximation ( ) 01 =Φ z can be used, giving:

 ( )( )[ ] ( ) 511 00000 ≤−+−+− σµ TmLTmLS     

or: ( ) ( )[ ]TmLTmLS 115 00000 −++−+≤ µσ
   

(A.5)

( ) ( )( ) ( ){ }1
0 0 0 0 0 0 0

0

1 1 1
0

L m T S L m T L m T

mT

σ µ σ

µ

 + − Φ − + − + − ≤


