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Process capability analysis is extremely important for optimization and quality improvement. It verifies whether 
the process under analysis is capable of producing items within engineering and customers’ specifications. The use of 
capability indices when assumptions are not satisfied leads to erroneous conclusions, compromising the study and analysis 
of the process, jeopardizing the fulfillment of requirements from management or external customers. Aiming at filling a 
gap identified in the literature, the main contributions of this work are: (i) proposition of capability indices for processes 
monitored through control charts based on regression models, for symmetric and asymmetric specifications; and (ii) 
comparison of the proposed indices with traditional capability indices through a simulated process.
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Abstract

would have to be settled for each new setting, in addition 
to the difficulty of calculating control limits due to the low 
number of samples of each batch manufactured in each 
setting. In these cases, the response variable (dependent 
variable) of a product or process is best represented by a 
mathematical equation that models its relationship with the 
control variables of the process (JACOBI et al., 2002; SHU et 
al., 2004).

Mandel (1969) proposed the regression control chart, a 
combination of control chart techniques and simple linear 
regression models. This chart is used in processes in which 
the effect of a response variable is a function of a control 
variable. Initially a regression model is generated, which 
represents the relationship between the response variable 
and the control variable, and subsequently the residual is 
monitored through the model. Traditional control charts are 
not able to perform analyses when the response variable is 
dependent on the control variable, as a constant average 
over time is presumed.

Mandel’s original proposal (1969) can only be applied 
in processes involving a control variable. Haworth (1996) 
extended Mandel’s proposal (1969) by suggesting the 
multiple regression chart, consisting in the estimation 
of a multiple linear regression model and monitoring of 
standardized residuals. However, Haworth’s work (1996) 

1. INTRODUCTION

Statistical Process Control (SPC) is an efficient technique 
that consists in methods of comprehension, monitoring and 
improvement of process performance over time (WOODALL, 
2000). SPC aims at detecting problems and making their 
identification easier for variability reduction – it is essential 
for quality and reliability improvement, in addition to the 
reduction of costs related to low quality of manufactured 
products. Knowledge about the process – by the means 
of control charts and capability indices – is essential for 
granting quality in company.

In the literature, the most widespread control charts are 
the traditional Shewhart charts, in reason of their simplicity 
and ease of understanding and formulation. Such charts 
consider data as independent and identically distributed 
around a constant mean (COSTA et al., 2005; MONTGOMERY, 
2004). These assumptions may not be satisfied when there 
are frequent changes in the setting of the control variables 
(independent variables) of the process, because in this case 
there is a change in data mean and variability, which requires 
a control chart for each new setting of the machine (PEDRINI 
and CATEN, 2011; LOREDO et al., 2002). This fact makes SPC 
operationalization more difficult, as a new Shewart chart 
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does not present a method clear enough for the chart 
application. Pedrini et Caten (2011) proposed a simple 
and efficient method for the application of the regression 
control chart in monitoring of production processes with 
one or more control variables.

In brief, control charts verify the stability of a process. 
However, the capability indices assess whether the process is 
able of meeting both the engineering/project specifications 
and the customers’ specifications. It is seen that a process 
can be under statistical control, but if its variability is greater 
than the amplitude of specifications, it will be considered as 
not able, and corrective actions should be taken in order to 
reduce the system’s variability. Traditional indices, namely 
the indices applied to control charts proposed by Shewhart, 
are the most widespread, being their ease of application a 
highlight. However, there is a gap in the literature: the lack 
of capability indices specific for processes monitored with 
control charts based on regression models.

Thus, the objective of this article is to fill this gap, and the 
main contributions are: (i) proposal of capability indices for 
control charts based on regression models, represented by 
GR indices, in this study, meeting symmetric and asymmetric 
specifications; and (ii) comparing the capability indices 
proposed with traditional capability indices by applying a 
simulated process.

This article is divided into six sections. In addition to this 
introduction, section two presents a theoretical framework 
addressing process capability indices and regression 
control charts. Section three presents the methodological 
procedures used. In section four, there is the proposal of 
calculation of capability indices for control charts based on 
regression models. Section five presents the comparative 
analysis of the proposed indices and the traditional indices. 
Finally, section six summarizes the main findings of this 
study, with suggestions for future studies.

2. THEORETICAL FRAMEwORk

2.1. Capability indices

The main objective to be achieved when studying 
capability indices is to have them serving as a basis for the 
making of decisions in a company, providing a strategic 
guide for leveraging and reflecting process quality (JEANG et 
CHUNG, 2009). The indices are dimensionless measures used 
to quantify the relationship between process performance 
and specification limits, and this quantification is essential 
for the success of improvement activities (WU et al., 2009). 
As a general rule, the larger the value of the index, the better 
the process is meeting specifications (COSTA et al., 2005).

The four most well-known and widespread basic indices 
are: Cp, Cpk, Cpm and Cpmk, represented by equations (1), (2), (3) 

and (4), respectively (DELERYD, 1999; KOTZ and JONHSON, 
2002). These indices are used for cases in which the target 
value (T) is equal to half the length of the specification range 
(M) and for normally distributed data.

(1)

(2)

(3)

(4)

In equations (1), (2), (3) and (4) the upper specification 
limit, the lower specification limit and the target value of a 
process are represented respectively by LSE, LIE and T. The 

mean is represented by  and  is the estimator of standard 
deviation.

The Cp index (index of potential capability) considers the 
process variability without considering the location of the 
mean, so it is often not applied, since it does not reflect the 
impact that mean changes have on capability (PEARN et 
KOTZ, 2006). As the Cp index can only be used in processes 
with bilateral specification limits, Kane (1986) presents the 
CpI and CpS indices for processes with unilateral specification 
limits, which are used for evaluation of capability of processes 
with response variables of greater-is-better and better-is-
better types, represented, respectively, in equations (5) and 
(6). Aiming at assessing the impact that mean changes have 
on capability, Kane (1986) introduced the Cpk index (effective 
capability index), which assesses both the variability and the 
centralization of process. Application of Cp and Cpk indices 
in parallel provides good indication of process capability 
in relation to mean and variability; however, they do not 
consider the target value of process (T).

(5)
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(6)

Based on the quadratic loss function of Taguchi, Chan. 
et al.,(1988) and Pearn et al. (1992) introduced the Cpm 
and Cpmk indices, respectively, which consider both the 
standard deviation of process and the square of difference 
between the process mean and the target value. Similarly 
to CpI and CpS indices, Chan et al.,( (1988) present the CpmI 
and CpmS unilateral capability indexes, which must be used 
for processes with response variables of smaller-is-better 
and greater-is-better types, respectively, represented by 
equations (7) and (8).

(7)

(8)

When the process means moves away from the target 
value, the value of Cpmk is more sensitive than the values of 
Cp, Cpk and Cpm indices (CHANG, 2009). According to Pearn 
et al. et al.,(1992), Cpmk ≤ Cpm ≤ Cpk ≤ Cp and in the equality 
among these four indicators the process is centralized. If 
these indices are equal and greater than 1, the process is 
able of meeting the specifications (VÄNNMAN, 1995).

The indices shown in equations (1), (2), (3), (4) are 
used for cases in which the target value (T) is equal to the 
midpoint of the specification limits (M). However, situations 
in which T≠M occur frequently in productive processes 
(WU et al.,2009). These situations denote asymmetric 
specification limits, in which the deviations from the target 
are less tolerable in one direction than in another.

Kane (1986) adapted the Cp, CpI, CpS and Cpk indices for 
asymmetric limits, represented by C*

p, C*
pI, C*

pS and C*
pk, 

presented in equations (9), (10), (11) and (12) respectively.

(9)

(10)

(11)

(12)

Chan et al.,(1988) present the C*
pm index, which is a 

generalization of the Cpm index for processes with non-
symmetrical specification limits. This index is presented in 
equation (13). According to Chan et al.,(1988), this index 
relates the smallest difference between the specification 
limits and the process target values with variability and 
mean deviations in relation to the process target.

(13)

Pearn et al.,(1999) proposed a generalization of Cpmk 
index for processes with asymmetric specification limits. 
This generalization is defined by equation (14).

(14)

where:

A = max(d( -T) / DS; d(T- ) / DI)

A* = max(d*( -T) / DS; d
*(T- ) / DI)

DS = LSE-T

DI = T-LIE

d* = min(DS; DI)

d= (LSE-LIE)/2

Among the studies of capability indices for asymmetric 
specification limits, the works of Chen et al. (1999), 
Jessenberger et Weihs (2000), Pearn et al.,( (2005), Pearn 
et al.,( (2006), Chang et Wu (2008) et Chang (2009) are the 
highlights.

The application of capability indices for processes with 
symmetric specification limits in processes with asymmetric 
limits might create erroneous conclusions. This same 
situation occurs in the application of indices presented in 
non-normal processes, making evident the importance 
of understanding the behavior and characteristics of each 
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productive process. Thus, in non-normal processes, it is 
necessary to seek alternatives that use capability indices for 
appropriate distributions (GONÇALEZ et WERNER, 2009).

2.2. Regression control charts

Regression control charts are used when the response 
variable varies due to frequent changes of control variables, 
not allowing the application of a traditional control chart, 
which assumes that data is independent and identically 
distributed around a constant mean. A regression chart 
should be used in processes in which the effect of a 
dependent variable is a linear function of an independent 
variable, given by a linear equation (JACOBI et al., 2002; SHU 
et al.,2004), since the variables involved in the process are 
correlated and individual control of these variables is not 
the best choice. Woodall and Montgomery (1999) state that 
regression charts are one of the techniques developed in 
the literature with great potential for practical application. 
One of the objectives of such charts is to control the mean 
of the response variable due to the control variable setting, 
unlike traditional control charts that monitor mean.

For this, it is necessary to analyze the relationship 
between the measured characteristics aiming at finding 
a quantitative expression that shows these relations. The 
appropriate model must allow interpreting the situation, 
getting estimates and making predictions. Application of the 
modeling technique by linear regression to a group of data 
results in the determination of linear coefficients, weighting 
the effect of independent variables on the dependent 
variable (FOGLIATTO, 2000). The linear regression model 
is shown in equation (15), representing the relationship 
between the dependent variable y and the k independent 
variables X (MONTGOMERY et al., 2001).

(15)

where:

In equation (15), y is the vector of values of the response 
variable, X is the matrix of values of n observations of k 
control variables, β is the vector of regression coefficients, 
and β0 is called intercept coefficient (value of y when all 

control variables are equal to zero.) Vector ε is estimated 
by the vector of residuals e, defined as the difference 
between the values observed and the values estimated by 
model (ŷ), presumed to be independently distributed, with 
zero mean and constant variance σ2. These assumptions are 
important for validating the estimated model (NETER et al., 
2005). When the number of observations (n) is greater than 
the number of controlled variables (k), the method used 
to estimate the regression equation is the ordinary least 
squares method, which aims at minimizing the quadratic 
sums of regression residuals (NETER et al., 2005).

According to Woodal et Montgomery (1999), a method 
of applying control charts can be divided into two phases: 
(i) Phase I (retrospective analysis), which includes the 
estimation of parameters and (ii) Phase II, which includes 
the monitoring of the process. Once the model is estimated, 
the regression control chart must be built for Phase I. To 
build the chart, the upper control limit, the central line and 
the lower control limit are given by equations (16), (17) and 
(18) respectively (PEDRINI et CATEN, 2011).

(16)

(17)

(18)

Where L is a constant value determined according to the 
sensitivity and number of false alarms wanted for this chart; 
in most cases, 2 or 3 is adopted. Mandel (1969) adopted 2 
standard deviations as a criterion. The estimate of variance 
of residuals of the regression model is given by the mean 
square of residuals (QMR), shown in equation (19).

(19)

where e = y - ŷ e p = k + 1

With the process under control in Phase I, the regression 
chart of Phase II is then developed. It is necessary to presume 
that the data of the process to be monitored have the same 
behavior of the data used in Phase I. Data collection for 
monitoring should contain the response variable monitored, 
and the respective values of the control variables of the 
process should be collected at regular time intervals.
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Pedrini et Caten’s proposal (2011) presents a modification 
of the control chart based on regression models proposed 
by Haworth (1996), allowing direct monitoring of the 
observations referring to a response variable dependent 
on one or more control variables, instead of monitoring the 
regression residuals. To build the control chart of Phase II 
is necessary to correct the control limits of Phase I, since 
the samples are different. According to Pedrini et Caten’s 
proposal (2011), the upper control limit, the center line and 
the lower control limits are calculated from equations (20), 
(21) and (22) respectively.

(20)

(21)

(22)

where hii=x’
i(X

’X)-1xi and xi is the vector of the control 
variables of the i-th new observation.

The hii element is used as a correction factor of the 
standard deviation of the prediction of a new observation, 
since it measures the distance of the control variables vector 
in relation to the vector composed of the mean value of 
each control variable.

If a point is not under control (above or below the upper 
and lower limits), the process is considered out of statistical 
control; in this case, special causes should be investigated 
and actions should be taken for improvement.

An evolution of the main studies about regression control 
charts is shown in Figure 1. Loredo (et al.,(2002) applied the 
individual measurement chart for residuals of a multiple 
linear regression model and Shu. et al.,(2004) proposed 
the EWMAREG chart, which basically consists in monitoring 
the standardized residuals of the regression model with an 
EWMA control chart. Control charts proposed by Haworth 
(1996), Loredo et al. (2002) and Shu et al., (2004) present the 
further advantage of preserving the temporal order of data, 
which makes the application of these procedures and the 
interpretation of results easier, if compared to the method 
presented by Mandel (1969). A review on regression control 
charts can be found in Shu et al., (2007).

Figure 1 – Evolution of studies concerning control charts based on regression models.

3. METHODOLOGICAL PROCEDURES

This paper involved three steps: (i) proposal of capability 
indices for control charts based on regression models (RC); 
(ii) development of regression chart for a process with 
random data, and (iii) comparison of indices proposed with 

traditional indices.

The first stage involved the proposal of the RC capability 
indices, since the application of traditional capability indices 
in processes monitored with regression control charts may 
generate erroneous conclusions regarding the capability 
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of the process to produce items not complying with 
specifications.

The proposition of RC capability indices started from the 
assumption that the target value of the process and the 
upper and lower control limits in the regression control 
charts are not constant values as in traditional control 
charts, but values defined according to the setting of control 
variables. The indices proposed considered processes with 
symmetric specification limits, represented by CpR, CpkR, CpmR 
and CpmkR, and processes with asymmetric specification 
limits, represented by C*

pR, C*
pkR, C*

pmR and C*
pmkR.

The second phase focused on the development of 
regression control chart for a process regression with 
random data based on the method proposed by Pedrini and 
Caten (2011), which includes the Phase I of data collection, 
setting of regression model and calculating the control limits 
of chart of Phase I, and Phase II for process monitoring 
aiming at identifying and eliminating the special causes 
resulting from failures in operation. New process data are 
collected in Phase II, and the monitoring control chart is 
developed according to the model validated in Phase I.

The third step focused on the application of RC indices 
and traditional indices by applying those to the simulated 
process. As soon as the process is stable, the calculation 
of the RC capability indices is carried out, with the use of 
standard deviation calculated by equation (23).

(23)

Because it is a calculation of residuals of a new dataset, 
deducting the estimated value for a regression model whose 
parameters were calculated with data from Phase I, it is 
not necessary to deduct the p degrees of freedom in the 
denominator, thus justifying equation (23).

The work method’s steps, meeting the development of 
the regression control chart based on Pedrini and Caten’s 
method (2011), and the calculation of RC indices are 
summarized in Figure 2.

Figure 2 – Method for building regression charts and calculating capability indices.
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4. PROPOSAL OF CAPABILITY INDICES FOR CONTROL 
CHARTS BASED ON REGRESSION MODELS

In order to develop the RC capability indices, it was 
necessary to define some concepts. The target value of the 
process (T) in regression control charts is not a constant value 
as in traditional control charts, but a value set according 
to the setting of control variables, as in equation (24). The 
same is true for the upper specification limit (LSE) and 
the lower specification limit (LIE), which are calculated by 
equations (25) and (26). The upper and lower specification 
limits, as well as the target value, are usually proposed by 
management or customers from needs and product and/or 
process analyses.

                                    

(24)

          

                        (25)

  

                                (26)

where: i = 1, 2,..., n

Constants of target intercept, upper limit and lower limit 
are represented by b0T, b0S e b0I, respectively. In most cases, it 
is assumed that T, LSE and LIE are parallel, so, bjT = bjI = bjS = bk. 
The only difference corresponds to the intercept constants, 
where boI < boT < boS, as shown in Figure 3.

Figure 3 – Identification of specification limits and intercept constants.

4.1. RC CAPABILITY INDICES FOR PROCESSES wITH 
SYMMETRIC SPECIFICATION LIMITS

Considering that specification limits vary according to 
the setting of control variables and assuming that LSEi and 
LIEi can be represented by equations (25) and (26), the 
numerator of the equation of the Cp traditional index is 
rewritten as in equation (27).

(27)

The number of samples is given by n. For simplification, it 
is assumed that these specification limits are parallel, so LSEi 
– LIEi is equal to b0S – b0I. Thus, according to this equation, 
the difference between LSEi – LIEi is always a constant value. 
By using this result and the constant sum property, equation 
(28) is obtained.

(28)

The CpR potential capability index for regression control 
charts is shown in equation (29), obtained by substituting 

equation (28) in equation (1) and using the  estimated 
standard deviation shown in equation (23).

(29)

Similarly, the adaptation of the Cpk effective capability 
index for control charts based on regression models is 
developed by modifying the numerator of the lower capacity 
index (CpI) and the numerator of the upper capability index 
(CpS), as in equations (30) and (31).

(30)

(31)

The substitution of equations (30) and (31) in equations of 
traditional CpI and CpS indices shown in equations (5) and (6) 
result in the CpkR effective capability index for control charts 
based on regression models. The CpIR, CpSR and CpkR índices 
are shown in equations (32), (33) and (34) respectively.
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(32)

(33)

(34)

As previously mentioned, the traditional Cpm, CpmI and 
CpmS indices take into consideration the target value of the 
process. The denominators of these indices, represented 
by equations (3), (7) and (8) respectively, are obtained 
from the Taguchi quadratic loss function, where the target 
value of the process is constant, as shown in equation (35). 
However, for processes monitored by control charts based 
on regression models, the target varies depending on the 
control variables. Thus, the variance is calculated according 
to equation (36).

(35)

(36)

By substituting the equations (28) and (36) in equation 
(3) of the Cpm capability index, the CpmR capability index is 
obtained. Similarly, the substitution of equations (30), (31) 
and (36) in equations (7) and (8) creates the CpmIR and CpmSR 
indices. The capability indices applied to control charts 
based on CpmR, CpmIR, CpmSR and CpmkR regression models are 
shown in equations (37), (38), (39) and (40).

(37)

(38)

(39)

(40)

4.2. RC CAPABILITY INDICES FOR PROCESSES wITH 
ASYMMETRIC SPECIFICATION LIMITS

The proposal of capability indices for asymmetric limits, 
i.e., T≠M, follows the same logic of indices proposed for 
symmetric tolerances.

The adaptation of C*
p, C

*
pI and C*

pS indices for control charts 
based on regression models is developed by modifying the 
numerator, as in equations (41), (42) and (43).

(41)

(42)

(43)

By substituting equations (41), (42) and (43) in equations 
(9), (10), (11) and (12), the RC capability indices are obtained, 
represented by C*

pR, C*
pIR, C*

pSR and C*
pkR for asymmetric 

specification limits, according to equations (44), (45), (46) 
and (47) respectively.

(44)

(45)

(46)

(47)

By substituting equations (36), (41) and (42) in equation 
(13) of C*

pm traditional capability index for asymmetric limits, 
the C*

pmR capability index is obtained, shown in equation 
(48).
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(48)

For the C*
pmkR index for asymmetric specification limits, 

the elements of equation (14) were modified, represented 
by equations (49) and (50). The C*

pmkR index is given by 
equation (51).

(49)

(50)

(51)

Where:

DSR = b0S-b0T

DIR = b0T – b0I

d*
R= min(DSR; DIR)

dR = (b0S-b0I)/2

5. COMPARATIvE ANALYSIS BETwEEN TRADITIONAL 
CAPABILITY INDICES AND RC CAPABILITIES INDICES

The process under study is composed of a response 
variable and four control variables (x1, x2, x3 and x4) and 
monitored by control charts based on regression models. 
In Phase I, the estimated regression model presented in 
equation (52) was based on a project of experiments, 
showing a QMR = 70.06 and a coefficient of determination R2 
of 85.2%. In this model, the interactions were not included, 
since they had p-values greater than the significance level 
adopted (0.05).

(52)

With the assumptions of validity in the model presented 
in Pedrini et Caten’s method (2011), the control chart based 
on regression models is developed for Phase II of process 
monitoring meeting 100 new samples, presented in the 
Appendix. Figure 4 shows the control chart of Phase II.

Figure 4 – Control chart based on regression models for process monitoring.

The control chart shown in Figure 4 is under statistical 
control, since it did not indicate samples outside the region 
defined by the control limits. Thus, it is possible to carry 
out the analysis of the process’ capability. The standard 
deviation for calculating the capability indexes is obtained 
using equation (23).

To calculate the capacity indices, the following were 
considered: (i) symmetric specification limits, and (ii) 
asymmetric specification limits.

To calculate the symmetric traditional capability indices, 
LSE, LIE and T were considered as worth respectively 160, 50 
and 105. For the calculations of the symmetric RC indices, 
the specification limits and the target value vary according 
to the control variables, as in equations (53), (54) and (55).

(53)

(54)
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(55)

For the application of asymmetric traditional indices, T 
= 80 was set as the process’ target value, having the same 
values considered for LSE and LIE. To calculate the RC 
asymmetric indices, T was defined according to equation 
(56), with the same equations (53) and (54) being considered 
for LSE and LIE.

(56)

To calculate the symmetric traditional indices (T=M) 
shown in Table 1, equations (1), (2), (3), (4), (5), (6), (7) and 
(8) were used, and for the symmetric RC indices, equations 
(29), (32), (33), (34), (37), (38), (39) and (40) were used. For 
the asymmetric traditional indices (T≠M) shown in Table 2, 
equations (9), (10), (11), (12), (13) and (14) were used, and 
for the asymmetric RC indices, equations (44), (45), (46), 
(47), (48) and (51) were used. Calculations of indices are 
presented in the Appendix. Figure 5 shows the comparison 
of indices for symmetric and asymmetric limits.

Table 1 – Traditional capability indices and RC indices for control charts based on regression models considering symmetric specification limits (T=M).

Sy
m

m
et

ric
 

sp
ec

ifi
ca

tio
n 

lim
its Traditional 

indices 1.47 1.04 1.89 1.04 0.91 0.64

RC indices
2.22 1.50 2.95 1.50 0.83 0.56

Table 2 – Traditional capability indices and RC indices for control charts based on regression models considering asymmetric specification limits (T≠M).

As
ym

m
et

ric
 

sp
ec

ifi
ca

tio
n 

lim
its Traditional 

indices
0.80 0.56 1.89 0.56 0.65 0.64

RC indices
1.21 1.07 3.09 1.07 0.71 0.83

Figure 5 – (a) Comparison of traditional and RC capability indices for symmetric limits; and (b) Comparison of traditional and RC capability indices for 
asymmetric limits.
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It is possible to see in Table 1 and Figure 5a that the Cp 
index had a value of 1.47, inferior to the value found for the 
CpR index, which was 2.22, meaning a process with excellent 
capability to meet specifications. The CpkR index also shown 
a superior value in relation to the Cpk traditional index. It is 
seen that the values obtained for CpI and CpIR indicate that the 
process has a mean (89.5) closer to the lower specification 
limit, since the values obtained were inferior if compared to 
those of the CpS and CpSR indices. The CpkR index had a value of 
1.50, meaning that the process is capable. However, it will be 
able to increase its capability by the means of centralization, 
since the CpR potential capability index indicates a capability 
of 2.22. The Cpm and Cpmk indices, as well as the CpmR and CpmkR 
indices, refer to the process as non-capable, since it does 
not reach the T target.

According to Table 2 and Figure 5b, the C*
p capability 

index had a value of 0.80, indicating that the process is 
potentially not capable. However, the C*

pR index showed a 
value of 1.21, meaning the process is potentially capable. 
The same situation occurs with C*

pk (0.56) and C*
pkR (1.07) 

indices. The C*
pmR and C*

pmkR indices present low values, 
showing the process as not able to reach the T target, having 
similar behavior to the same indices for symmetric limits 
shown in Table 1.

Therefore, it is seen that traditional indices used in 
processes monitored with control charts based on regression 
models may lead to erroneous conclusions. In this context, it 
is relevant to stress how important it is to correctly apply the 
capability indices according to the type of control chart used 
to monitor the process.

6. FINAL THOUGHTS

This study aimed at: (i) proposing RC capability indices 
for control charts based on regression models, considering 
symmetric and asymmetric specifications; and (ii) comparing 
RC capability indices with traditional capability indices by 
applying those in a simulated process.

The proposed RC capability indices assume that 
specification limits are not fixed, but vary depending on 
the setting of control variables. Based on this assumption, 
adjustments were made in the traditional capability indices 
and the CpR, CpkR, CpmR and CpmkR indices were proposed for 
symmetric specifications, and the C*

pR, C*
pkR, C*

pmR and C*
pmkR 

indices were proposed for asymmetric specifications.

Comparisons were made between the values of traditional 
indices and those of the RC indices proposed, by applying 
them in a process with random data. Misused indices can 
create erroneous conclusions, risking the study and analysis 
of process, and thus jeopardize the meeting of requirements 
from management or external customers.

As a suggestion for future studies, the application of 
RC indices into productive processes is recommended, 
including estimation steps of the control chart based on 
regression models. The development of a flowchart is also 
recommended, aiming at guiding the choices of capability 
indices according to the characteristics of each process.
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APPENDIx

Table 3 presents the database in which the capability indices were applied.
Table 3 – Database

x1 x2 x3 x4 y ŷ x1 x2 x3 x4 y ŷ
1 37.30 4.29 16.46 122.64 81.39 74.92 51 27.91 7.62 15.80 109.15 56.66 60.81
2 58.36 6.42 14.55 231.48 83.95 92.04 52 109.60 4.35 14.71 134.58 92.56 91.84
3 83.93 5.21 9.89 104.06 85.63 87.59 53 73.75 6.60 1.70 198.65 102.11 99.55
4 51.28 6.76 12.81 127.82 72.54 76.98 54 82.02 4.91 7.83 245.68 115.80 107.27
5 81.21 5.73 4.55 167.19 95.61 97.29 55 68.52 4.65 4.75 189.35 111.64 100.31
6 120.32 4.47 14.83 135.21 86.00 90.85 56 31.09 5.73 11.77 154.80 76.70 75.52
7 103.10 5.39 8.76 124.50 82.51 91.81 57 104.79 4.04 15.90 182.64 107.37 97.99
8 76.23 4.98 7.79 95.70 78.13 87.30 58 96.26 7.99 2.17 225.85 89.45 101.96
9 136.10 7.59 15.25 192.94 71.19 87.52 59 114.47 4.59 19.79 101.93 80.36 83.60

10 85.96 5.58 13.09 185.74 100.27 95.10 60 57.55 6.82 0.55 187.39 85.64 94.29
11 88.36 5.28 12.94 240.95 97.60 103.20 61 55.00 5.89 6.60 193.68 89.47 92.75
12 38.24 6.57 12.48 146.83 85.61 75.11 62 109.61 5.11 16.85 138.27 90.25 88.98
13 70.06 2.77 19.07 147.55 91.56 90.91 63 36.86 6.28 10.52 144.12 64.04 76.18
14 78.14 5.75 6.77 168.00 92.66 95.40 64 78.99 6.64 9.66 115.28 87.62 84.76
15 102.75 4.47 4.13 148.70 105.27 100.23 65 97.57 7.33 11.25 161.55 94.19 89.75
16 116.90 6.26 10.57 71.02 78.65 81.24 66 107.62 6.58 17.24 55.95 76.56 74.64
17 73.86 4.56 18.84 149.14 87.45 87.49 67 41.50 5.78 6.21 245.21 90.53 94.92
18 70.86 4.75 15.44 169.02 105.62 91.08 68 110.28 6.82 19.29 128.00 77.72 81.69
19 97.74 5.63 14.68 203.47 89.65 97.16 69 35.73 4.61 9.34 96.15 70.64 74.69
20 102.00 5.90 -0.34 120.64 98.34 95.90 70 37.13 5.21 5.13 107.42 90.85 77.91
21 110.01 4.87 14.90 66.90 91.51 81.86 71 72.59 6.28 12.20 127.30 75.60 84.36
22 121.22 3.79 4.41 70.63 88.65 91.12 72 108.04 4.58 9.53 145.12 98.90 95.98
23 50.39 7.00 13.79 120.88 81.65 74.55 73 122.42 5.95 3.03 85.39 72.99 88.22
24 103.74 4.95 9.68 149.49 90.08 95.50 74 86.49 4.62 1.26 82.06 91.58 92.25
25 41.90 3.50 12.16 128.59 89.42 82.40 75 120.21 4.93 12.39 89.59 83.82 85.52
26 53.77 5.00 17.68 160.14 81.11 83.23 76 68.56 5.04 3.63 112.05 85.39 90.31
27 104.13 6.06 9.56 124.05 105.99 89.53 77 113.65 5.17 19.74 195.72 78.69 94.01
28 72.41 5.16 4.99 190.11 85.65 99.79 78 118.52 6.24 4.25 89.19 110.54 87.55
29 66.08 4.36 7.77 229.79 101.55 103.60 79 86.24 5.09 12.21 153.43 99.18 92.90
30 87.40 4.20 6.06 199.58 92.65 105.12 80 66.35 7.04 17.69 215.56 86.02 88.56
31 81.98 5.06 5.27 99.07 95.26 90.07 81 68.01 6.02 16.82 221.09 72.98 92.83
32 40.59 5.76 20.90 135.03 68.74 71.21 82 110.51 5.19 13.55 136.57 99.57 90.67
33 64.27 5.83 11.83 216.82 109.09 95.09 83 51.51 6.42 19.20 53.60 70.70 64.46
34 118.10 6.07 14.94 99.60 100.95 82.39 84 61.48 6.53 3.46 179.41 100.28 93.27
35 98.71 4.81 4.40 119.25 90.78 95.35 85 116.63 5.43 12.01 207.37 97.08 99.61
36 83.76 5.25 13.28 97.20 68.99 84.42 86 43.03 4.71 12.40 52.24 65.64 69.98
37 78.98 3.10 6.20 94.88 90.58 93.51 87 121.70 4.31 2.54 181.92 100.03 104.97
38 100.72 5.45 5.09 167.86 112.02 99.47 88 78.04 7.99 8.51 235.31 103.89 96.98
39 118.20 3.52 11.90 120.69 85.76 93.56 89 95.85 5.05 10.05 168.61 98.94 97.17
40 81.00 7.68 11.77 201.36 101.15 91.86 90 44.41 5.20 14.06 195.29 90.91 86.18
41 40.59 4.90 12.97 187.93 80.61 85.21 91 64.34 4.68 13.65 210.43 100.84 96.08
42 75.00 5.18 16.98 178.65 86.80 91.04 92 108.51 5.59 5.38 127.43 99.07 93.84
43 67.70 5.68 12.72 55.26 77.54 75.42 93 59.06 4.96 13.95 79.29 71.78 77.21
44 74.57 4.90 17.22 124.07 100.55 84.63 94 25.21 5.31 13.50 94.71 71.36 65.05
45 114.30 5.97 3.52 243.88 115.69 108.49 95 33.05 7.97 6.93 247.90 79.19 85.54
46 32.27 4.37 10.90 183.94 96.95 83.81 96 68.40 7.30 0.19 141.54 91.08 90.42
47 108.38 4.28 4.25 105.01 100.14 95.12 97 92.19 4.51 17.84 87.97 88.16 83.10
48 67.07 5.10 6.26 162.09 90.65 94.39 98 88.18 5.79 10.06 76.72 88.87 83.07
49 61.50 7.65 6.01 179.95 89.63 88.82 99 77.14 6.59 10.84 54.69 71.21 76.17
50 51.22 5.33 4.95 120.35 79.54 84.80 100 30.29 4.25 13.79 192.21 90.88 82.36

Tables 4 and 5 present the equations of RC capability indices applied to data for symmetric and asymmetric specification 
limits respectively.
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Table 4 – RC capability indices for symmetric specification limits.

RC capability indices for symmetric limits Application of RC indices in the simulated process Results

2.22

1.50

2.95

1.50

0.83

0.56

1.10

0.56

Table 5 – RC capability indices for asymmetric specification limits.

RC capability indices for asymmetric limits Application of RC indices in the simulated process Results

1.21

1.07

3.09

1.07

0.71

0.83


