
Brazilian Journal of Operations & Production Management 12 (2015), pp 180-194

NEW HEURISTICS FOR THE NO-WAIT FLOWSHOP WITH SEQUENCE-DEPENDENT SETUP
TIMES PROBLEM

Daniella Castro Araújoa; Marcelo Seido Naganoa

a University of São Paulo (USP), São Paulo, SP, Brazil

ABEPRO
DOI: 10.14488/BJOPM.2015.v12.n2.a1

In this paper, we address the problem of scheduling jobs in a no-wait flow shop with sequence-dependent setup
times with the objective of minimizing the make span and the total flow time. As this problem is well-known for being NP-
hard, we present two new constructive heuristics in order to obtain good approximate solutions for the problem in a short
CPU time, named GAPH and QUARTS. GAPH is based on a structural property for minimizing make span and QUARTS breaks
the problem in quartets in order to minimize the total flow time. Experimental results demonstrate the superiority of the
proposed approaches over three of the best-know methods in the literature: BAH and BIH, from Bianco, Dell´Olmo and
Giordani (1999) and TRIPS, by Brown, McGarvey and Ventura (2004).

Keywords: Heuristic, No-wait Flow shop, Sequence-Dependent Setup, Make span, Total flow time.

Abstract

INTRODUCTION

The first systematic approach to scheduling problems
was undertaken in the mid-1950s. Since then, thousands of
papers on different scheduling problems have appeared in
the literature. The majority of these papers assumed that
the setup time is negligible or part of the job processing
time. Treating setup times separately from processing times
allows operations to be performed simultaneously and
hence improves resource utilization. This is, in particular,
important in modern production management systems
such as just-in-time (JIT), optimized production technology
(OPT), group technology (GT), cellular manufacturing (CM),
and time-based competition (ALLAHVERDI et al., 2008).
Another important area in scheduling arises in no-wait flow
shop problems (NWFSP), where jobs have to be processed
without interruption between consecutive machines. There
are several industries where the no-wait flow shop problem
applies including the metal, plastic, and chemical industries.
As noted by Hall and Sriskandarajah (1996), the first of two
main reasons for the occurrence of a no-wait or blocking
production environment lies in the production technology
itself. In some processes, for example, the temperature

or other characteristics (such as viscosity) of the material
require that each operation follow the previous one
immediately. According to Bianco .et al., (1999), flow shop
no-wait scheduling problems are also motivated by concepts
such as JIT and zero inventory in modern manufacturing
systems.

A survey on NWFSP has been conducted by Hall and
Sriskandarajah (1996), where several practical applications
are shown. Allahverdi.et al., (1999, 2008) provided a
comprehensive review of the literature on scheduling
problems with setup times. The NWFSP with sequence
dependent setup times with the objective of minimizing
make span was first proposed by Bianco et al.,(1999). They
showed how to reduce this problem to the asymmetric
travelling salesman problem (ATSP) and presented two
lower bounds and two heuristics, named BAH and BIH. The
computational results showed that BIH outperformed BAH
in the solutions quality. Kumar et al.,(2000) considered a
NWFSP that used lot-streaming to improve productivity.
They developed a TSP formulation for the multi-product
and continuous-sized case and proposed a heuristic to
obtain an optimal sequence for integer-sized sublots.
Allahverdi et Aldowaisan (2000) found optimal solutions

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

181

for the problem, where the setup and
processing times satisfy certain conditions, and presented
five heuristics for the general problem. Later, Allahverdi

et Aldowaisan (2001) considered the
problem and presented five heuristics that used a repeated
insertion technique. Stafford et Tseng (2002) proposed two
mixed-integer linear programming (MILP) models to solve
the m-machine NWFSP with sequence dependent setup
times in order to minimize the make span. Aldowaisan
et Allahverdi (2003) proposed six heuristics based on
simulated annealing and genetic algorithms techniques

for the problem. The simulated annealing
based heuristics performed better than the others. Fink
et Voβ (2003) proposed three constructive heuristics and
several meta-heuristics for the NWFSP with total flowtime
as the criteria. Shyu et al., (2004) presented an ant colony

optimization algorithm for the problem,
and showed that their algorithm outperformed earlier
heuristics.. Brown et al., (2004) presented a non-polynomial
time solution method and a heuristic named TRIPS for the
NWFSP with sequence independent setup times, considering
for the performance measures both the total flow time

and make spanRuiz et al.,(2005) addressed the
problem and proposed two genetic algorithms, named GA
and HGA.. França et al., (2006) considered the same problem
as. Bianco et al., (1999) and solved it by an evolutionary
approach. Their genetic algorithm outperformed BIH. Ruiz
et Allahverdi (2007a) presented a domination relation for

the problem and proposed an iterated
local search method and five heuristics for the same
problem with m-machines. The results showed that three
of their heuristics outperformed TRIPS and the ant colony
algorithm of Shyu et al., (2004). Ruiz et Allahverdi (2007b)
proposed seven heuristics and four genetic algorithms for
the NWFSP with sequence independent setup times in order
to minimize the maximum lateness. Their genetic algorithms
outperformed the heuristics of Ruiz et Allahverdi (2007a).
Grabowski et Pempera (2007) developed and compared

five heuristcs for the problem. In order to
decrease the computational effort, they used multimoves.
Ruiz et Stüzle (2008) presented two simple local search

based iterated greedy algorithms for both and

 problems, and showed that their algorithms
performed better than GA and HGA. Framinan et Nagano

(2008) studied the problem and proposed
a heuristic based on an analogy between the problem
under consideration and the travelling salesman problem
(TSP). Pan et al., (2008) presented a discrete particle swarm
optimization (DPSO) to solve the NWFSP with both make
span and total flow timecriteria. The results showed that
the algorithm outperformed the heuristics of Grabowski
et Pempera (2007) and Fink et Voβ (2003). Yaurima et
al.,(2009) proposed a genetic algorithm for the hybrid
flow shop problem with unrelated machines, sequence
dependent setup times, availability constraints and limited
buffer, and introduced a crossover operator and stopping
criterion to improve the solution quality. Eren (2010)
proposed an integer programming model to solve the flow
shop problem with sequence dependent setup times. The
objective function was the weighted sum of total completion
time and the make span. The model could solve problems up
to six machines and eighteen jobs. Wang (2010) considered
the NWFSP with maximum lateness criterion and developed
properties to reduce the time to evaluate a candidate in a
tabu search approach. Framinan et al., (2010) addressed the

 problem and proposed a constructive heuristic
based on an analogy with the two-machine problem.
The computational results showed that the heuristic
outperformed existing ones regarding the solution quality.

In this paper, we consider the problem of scheduling
a no-wait flow shop problem with sequence dependent

setup times (), which consists of a set
 of n jobs which are to be processed on a

set of m dedicated machines,
each one being able to process only one job at a time.
Job consists of m operations ,
to be executed in this order, where operation must
be executed on machine k, with processing time,
immediately before operation . There is a sequence

dependent setup time between operations and
 in machine k. We propose two new heuristic methods

for the problem, GAPH and QUARTS, in order to minimize
the make span and the total flow time, respectively. GAPH is
based on a property of the scheduling problem that provides

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

182

the time break between the beginning of job

 and the

beginning of job at machine k, where, is the job of
 occupying position i in σ. QUARTS breaks the problem in

quartets, reducing the required computational effort to find
the solution.

EXISTING CONSTRUCTIVE HEURISTICS FOR THE
PROBLEM

In this section, we review the main contributions to the
problem regarding constructive methods. More specifically,
we explain in detail the constructive heuristics BAH and
BIH, from Bianco et al., (1999) and TRIPS, from Brown et
al.,(2004). BAH and BIH were made for the no-wait flow
shopwith sequence-dependent setup times in order to
minimize the make span, and were adapted in this work to
also minimize the total flow time. TRIPS was made for the
no-wait flow shop with sequence-independent setup times,
to minimize both the make span and total flow time , and
was adapted in this work to the no-wait flow shopwith
sequence-dependent setup times.

BAH

BAH algorithm finds a feasible sequence in n iterations.
At each iteration, given a partial sequence of the scheduled
jobs computed in the previous iteration, the algorithm
examines a set of candidates of the unscheduled jobs, and
appends a candidate job to a partial sequence minimizing
the time when the shop is ready to process an unscheduled
job.

The pseudo-code of the heuristic is as follows:

Given a set of n jobs, let σ be the set
of programmed jobs and U be the set of non-programmed
jobs.

Step 1: ; ;

Step 2: While , do:

Step 2.1: Choose the job to be added at the end
of the sequence , such that the makespan/flowtime is
minimum;

Step 2.2: Add job to the end of the sequence σ;

Step 2.3: .

BIH

The BIH algorithm also finds a sequence of n jobs on n
iterations. But in this algorithm, at each iteration it considers

a sequence of a subset of jobs, and finds the best sequence
obtained inserting an unscheduled job in any position of the
given sequence.

A more detailed description of the heuristic is as follows:

Given a set of n jobs, let σ be the
set of programmed jobs, U be the set of non-programmed
jobs and h the relative insertion position.

Step 1: ; ;

Step 2: While , do:

Step 2.1: Choose the job which can be inserted
in the sequence , such that the make span/flow time is
minimum. Let h be the relative insertion position;

Step 2.2: Insert job at position h in the sequence σ;

Step 2.3: .

TRIPS

TRIPS examines all possible three-job combinations from
the set of unscheduled jobs and chooses the sequence

 that minimizes the three-job objective. Then,
assigns job to the last empty position in the sequence
σ and removes from U. The heuristic repeats the
process, assigning one more job to σ for each set of triplets
examined until only three jobs are left. Then, it selects the
optimal sequence for these jobs and places them in the final
positions of heuristic sequence σ.

The pseudo-code of the heuristic is as follows:

Given a set of n jobs, let σ be the set
of programmed jobs and U be the set of non-programmed
jobs.

Step 1: ; ; h ;

Step 2: While h<n-2, do:

Step 2.1: Given that the first h jobs are assigned in
sequence , compare all ordered triplets of jobs from ;

Step 2.2: Choose the triplet such that the
make span/flow time is minimized for jobs in
positions h+1, h+2, h+3, respectively, of sequence .

Step 2.3: Place in position h+1 of ;

Step 2.4: h h+1; ;

Step 3: Assign and to the last two positions,
respectively, of .

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

183

A STRUCTURAL PROPERTY FOR THE NEW HEURISTIC
FOR MAKESPAN

Given a sequence σ of ,

is the job of occupying

position i in σ. The time break between the beginning of job

 and the beginning of job at machine k is

, calculated as follows:

Defining as the time break between the end
of job

and the beginning of job at machine k, it

can be calculated as follows:

 (1)

 (2)

 (3)

The GAP of the first job in the sequence on machine k is
defined by expression (4):

 (4)

Figure 1 shows the time break between the end of job

and the beginning of job

on machine 2 ().

Figure 1 – Example of the GAP calculation

THE NEW HEURISTIC FOR MAKESPAN

The new heuristic proposed in this paper will be called
GAPH – Gap Heuristic. The pseudo-code of the algorithm is
given next:

Given a set of n jobs, let U be the

set of non-programmed jobs and
be the sequence of n jobs scheduled, where x = {1,2,3,4}.

Calculate the of each job i = 1, ..., n to each job j
= 1, ..., n at all m machines.

Step 1: UJ;  Ø;

Step 2: While U ≠ Ø, do:

Step 2.1: Calculate the total cost* on the last machine for
all possible insertions of each job in the sequence

. Let h be the relative insertion position;

Step 2.2: Choose the job that gives the lower total cost
at position h;

Step 2.3: Insert job at position h of the sequence ;

Step 2.4: U  U- ;

Step 3: UJ; Ø

Step 4: While U ≠ Ø, do:

Step 4.1: Calculate the total GAP** for all possible
insertions of each job in the sequence . Let h be
the relative insertion position;

Step 4.2: Choose the job that gives the lower total GAP
at position h;

Step 4.3: Insert job at position h of the sequence ;

Step 4.4: U  U- ;

Step 5: UJ; Ø;

Step 6: While U ≠ Ø, do:

Step 6.1: Calculate the sum of the GAPs on the last
machine for all possible insertions of each job in
the sequence . Let h be the relative insertion position;

Step 6.2: Choose the job that gives the lower sum of

(3)

(2)

(1)

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

184

The sum of the GAPs with the processing time

of the job to be inserted on the last machine is:

.

Figure 4 shows how the method works for each pair of
steps (1-2; 3-4; 5-6; 7-8). In the example, jobs and were
already scheduled () and job is scheduled on
each possible position of the sequence (h).

the GAPs on the last machine at position h;

Step 6.3: Insert job at position h of the sequence ;

Step 6.4: U  U- ;

Step 7: UJ; Ø;

Step 8: While U ≠ Ø, do:

Step 8.1: Calculate, for all possible insertions of each job
 in the sequence , the sum of the GAPs with the

processing time of the job on the last machine. Let h be the
relative insertion position;

Step 8.2: Choose the job that gives the lower
sum of the GAPs with the processing time of the job on the
last machine at position h;

Step 8.3: Insert job at position h of the sequence .

Step 8.4: U  U- ;

Step 9: Choose, among the sequences

, the one with the lower make span.

*The total cost on a k machine is defined as the scheduling

total time on this machine. Thus, the total cost encompasses

the sum of the GAPs on machine k with the scheduled

operations processing times on that machine. Note that the

total cost on the last machine is equivalent to the (see Figure

2).

Figure 2 – Example of the total cost

**The total GAP is the sum of all GAPs in all machines.

In Figure 3, the total GAP is:

The sum of the GAPs on the last machine is:

.

Figure 3 – Example of all the GAPs in the scheduling

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

185

Figure 4 – Numerical example of how the method works

For example, if the method were on the second step,
the sequence chosen would be the third one, that gives the
lower total cost on the last machine.

DESCRIPTION OF THE NEW HEURISTIC FOR THE TOTAL
FLOWTIME

Brown et al., (2004) presented the TRIPS heuristic detailed
above. TRIPS breaks the problem in triplets, reducing the
required computational effort to find the solution. We made
some modifications in this heuristic in order to improve its
results. The main difference of the proposed heuristic is that
it breaks the problem in quartets, instead of triplets. The
new heuristic will be called QUARTS.

In order to choose the two first jobs, QUARTS examines
all possible four-job combinations from the set of jobs J
and chooses the sequence that minimizes
the total flow time. Then assigns jobs and to the first
and second positions of σ, respectively, and removes them
from the set of non-scheduled jobs. In the next iteration,
the job scheduled in the second position of σ will be the first
position (of all possible four-job combinations

 . The job in the second position () of the
quartet with the lowest flow time is then scheduled in the
next empty position of σ and is removed from the set of

non-scheduled jobs. Repeating this process, QUARTS assigns
one job in at each iteration, and the job scheduled in the
previous iteration is always the first one of the quartets of
the current iterations, until only three jobs are left. Select
the optimal sequence for these jobs and place them in the
final positions of heuristic sequence σ. Then, QUARTS tries
to improve the solution found through a neighborhood
insertion and a neighborhood permutation search
procedures, described as follows:

• Neighborhood Insertion Search:

Insert each job in the sequence σ at the (n-1)²
possible positions, being n the number of jobs. Choose
the insertion that obtains the lower total flowtime.

• Neighborhood Permutation Search:

This search exchanges pairs of tasks in the sequence

, at the possible positions. Choose the
insertion that obtains the lower total flowtime.

The pseudo-code of the algorithm is given next:

Given a set of n jobs, let U be the

set of non-programmed jobs and be
the sequence of n jobs scheduled.

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

186

Step 1: UJ; ; h .

Step 2:

Step 2.1: Calculate the total flow time for all possible four-
job combination of U;

Step 2.2: Choose the quartet that gives
the lower flow time and assign and in positions 1 and
2 of σ, respectively;

Step 2.3: h h+2; ; .

Step 3: While h<n-2, do:

Step 3.1: ;

Step 3.2: Calculate the flow time for all quartets
 of U;

Step 3.3: Choose the quartet that gives the lower flow
time and assign to the position h of σ;

Step 3.4: h h+1; ;

Step 4: Assign to the last positions, respectively,
of σ. Calculate the total flow time.

Step 4.1: Calculate the total GAP** for all possible
insertions of each job in the sequence . Let h be
the relative insertion position;

Step 4.2: Choose the job that gives the lower total GAP

at position h;

Step 4.3: Insert job at position h of the sequence ;

Step 4.4: U  U- ;

Step 5: Neighborhood insertion search: Considering

all insertion neighborhood of sequence σ, determine the

sequence that gives the lower total flow time. If the total

flow time of the sequence is lower than the sequence σ,

then σ .

Step 6: Neighborhood permutation search: Considering

all insertion neighborhood of sequence σ, determine the

sequence that gives the lower total flow time. If the

total flow time of the sequence is lower than the

sequence σ, then σ .

Figures 5, 6 and 7 give an example of the method, in a

problem with 5 jobs and 3 machines.

First of all, QUARTS calculates the flow time of all quartets

 . Then, it picks up the one with the lowest flow

time. Figure 5 shows the selected quartet ().

Figure 5 – First selected quartet

The first and second jobs of the quartet
are then programmed in the first and second positions of
the set of programmed jobs (σ), and are removed from the
set of non-programmed jobs (U). In the next iteration, job
will be the first position of all quartets.

After calculating the flow time of all quartets
, QUARTS picks up the one with the lowest flow time. Figure
6 shows the selected quartet ().

Figure 6 – Second selected quartet

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

187

As there are only three jobs to be programmed, all of the

non-programmed jobs of this quartet will be programmed

in the last positions of σ. Thus, will be

programmed in the third, fourth and fifth positionsof
, respectively, and removed from U. So, the final sequence

will be , } (Figure 7).

Figure 7 – Final sequence

Then, the heuristic tries to improve the result with the
neighborhood insertion and permutation searches.

COMPUTATIONAL EXPERIENCE

The computational experience was carried out in two
parts. In part I, we tested GAPH, BIH, BAH and TRIPS with
the make span criteria. In part II, we tested QUARTS, BIH,
BAH and TRIPS with the total flow time criteria. As stated,
TRIPS heuristic was adapted to the no-wait flow time with
sequence-dependent setup times problem, and BAH and
BIH were adapted in order to also minimize the total flow
time.

The heuristics were tested in the well-known tested of
Taillard (1993). This tested contains twelve sets for a given
combination of jobs and machines, i.e., n {20,50,100,200,500}
and m {5,10,20}. We performed four experiments, one for
each of the four different sequence-dependent Taillard-
based instance sets from. (Ruiz et al. ,(2005). The tests
contain four different processing times to sequence-
dependent setup times ratios. For example, the instance set
SSD-10 is composed of one hundred twenty instances where
the processing times are those of Taillard’s benchmark and
where the sequence-dependent setup times are 10% of the
processing times. In the instance set SSD-50, the setup times
are 50% of the processing times and the instance sets SSD-
100 and SSD-125 have setup times that are 100% and 125%
of the processing times respectively. So for example, if the
processing times in Taillard’s instances are generated from
a uniform distribution in the range [1; 99], in the SSD-10
instance set the setup times are uniformly distributed in the
range [1; 9] ([1; 49], [1; 99] and [1; 124] for the instance sets
SSD-50, SSD-100 and SSD-125 respectively). Thus, we have
four problem sets and a total of 480 different instances. The
five hundred job instance was rather large and we chose to
solve only the first one hundred ten instances (up to two
hundred jobs and twenty machines).

The instances in the tested have been solved by the
selected heuristics (coded in Python). Part I was solved in a
computer with a Pentium IV 3.00GHz processor and 512MB
RAM, and Part II in a computer with a Intel Core 2 Duo
2.20GHz/2.20GHz processor and 4.00GB RAM.

Tables 1 and 2 summarize the result obtained for the
make span criteria and Tables three and four for the total
flow time criteria in terms of the success percentage, the
average relative percentage deviation (ARPD), and the
average CPU time.

The success rate is defined by the ratio between the
number of problems for which a particular method was
the best solution and the total number of problems solved.
Therefore, when two methods get the best solution for
the same problem, their percentages of success are both
improved.

The ARPD consists of averaging the RPD over a number of
instances with the same number of jobs. We have grouped
the results for a given number of jobs and different machines,
as the number of machines had almost no influence in the
results. For a given objective function , the RPD obtained
by a heuristic H on a given instance is computed as follows:

 (5)

where:

 is the makespan/total flowtime computed by
method h;

 is the best makespan/total flowtime computed
by the methods.

As we can see from the results in Tables 1 and 2, the
proposed heuristic obtains better results than the rest of the
constructive heuristics. Over all configurations, the maximal
ARPD from the best solution found was 0.14% for GAPH
(when TRIPS found the best solution) and 2.48% for BIH. The
maximal ARPD for BAH was 15.87% and 9.27% for TRIPS. All
success rates for BAH were zero, and TRIPS only got the best
solution once. So, we can conclude that BAH and TRIPS are
not competitive with the other heuristics tested.

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

188

Table 1 – Comparison of results in Taillard´s testbed SSD-10 and SSD-50 (Makespan)

SSD-10 SSD-50

n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

20x5

0.00* 60 0 100 0 60 0 100

15.54** 1.83 9.27 0 13.13 1.27 7.23 0

0.03*** 0.11 0.34 0.27 0.03 0.11 0.34 0.27

20x10

0 50 0 100 0 70 0 100

15.87 2.48 8.23 0 14.21 1.59 8.09 0

0.06 0.15 0.37 0.31 0.06 0.15 0.36 0.31

20x20

0 60 0 100 0 70 0 100

13.42 0.42 8.82 0 13.21 0.88 8.37 0

0.18 0.26 0.43 0.43 0.17 0.26 0.42 0.43

Average

0 56.67 0 100 0 66.67 0 100

14.94 1.58 8.77 0 13.51 1.25 7.9 0

0.09 0.17 0.38 0.34 0.09 0.17 0.37 0.34

50x5

0 70 0 100 0 50 0 100

11.74 0.41 5.77 0 9.8 0.98 5.44 0

0.17 2.87 14.3 7.92 0.16 2.89 14.11 7.96

50x10

0 90 0 100 0 80 0 100

13.42 0.08 6.67 0 11.31 0.08 5.57 0

0.4 3.09 14.45 8.3 0.4 3.14 14.22 8.35

50x20

0 80 0 100 0 90 0 100

13.92 0.1 8.41 0 12.22 0.03 7.6 0

1.16 3.84 14.85 9.1 1.17 3.88 14.66 9.15

Average

0 80 0 100 0 73.33 0 100

13.03 0.2 6.95 0 11.11 0.37 6.2 0

0.58 3.27 14.53 8.44 0.57 3.3 14.33 8.49

100x5

0 70 0 100 0 60 0 100

10.11 0.73 6.08 0 8.27 0.36 5.32 0

0.83 40.7 226.25 119.23 0.67 40.75 225.78 121.01

100x10

0 40 0 100 0 30 0 100

11.16 0.85 7.07 0 8.68 0.43 6.68 0

1.67 39.97 226.09 118.98 1.69 40.17 226.26 118.94

100x20

0 60 0 100 0 80 0 100

11.42 0.26 7.54 0 9.81 0.14 6.74 0

5.6 43.73 225.7 122.87 5.07 43.82 226.89 123.65

Average

0 56.67 0 100 0 56.67 0 100

10.89 0.61 6.9 0 8.92 0.31 6.25 0

2.7 41.47 226.01 120.36 2.48 41.58 226.31 121.2

200x10

0 50 0 100 0 80 0 100

8.11 0.33 6.08 0 6.68 0.12 4.58 0

6.88 611.5 3799.28 1837.43 6.81 612.89 3759.58 1839.95

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

189

200x20

0 70 0 100 0 80 0 100

8.68 0.11 5.52 0 7.43 0.02 4.4 0

21.63 626.84 3681.3 1834.39 20.81 629.81 3653.72 1843.07

Average

0 58.89 0 100 0 72.22 0 100

9.23 0.35 6.16 0 7.68 0.15 5.07 0

10.4 423.17 2568.86 1264.06 10.03 424.11 2546.54 1268.07

* Success Rate (%);** ARPD (%);*** Average CPU time (second).

Table 2 - Comparison of results in Taillard´s testbed SSD-100 and SSD-125 (Makespan)

SSD-100 SSD-125

n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

20x5

0 20 0 100 0 60 10 90

9.95 1.08 5.71 0 10.54 0.85 5.08 0.14

0.02 0.11 0.34 0.27 0.02 0.11 0.33 0.27

20x10

0 50 0 100 0 50 0 100

12.2 1.09 6.82 0 11.46 1.03 5.62 0

0.07 0.14 0.36 0.31 0.06 0.15 0.36 0.31

20x20

0 60 0 100 0 50 0 100

12.15 0.35 7.57 0 11.85 0.93 6.63 0

0.18 0.26 0.42 0.43 0.18 0.26 0.42 0.44

Average

0 43.33 0 100 0 53.33 3.33 96.67

11.44 0.84 6.7 0 11.28 0.94 5.78 0.05

0.09 0.17 0.37 0.34 0.09 0.17 0.37 0.34

50x5

0 50 0 100 0 30 0 100

9.51 0.8 4.38 0 9.21 1.32 5.7 0

0.17 2.88 14.11 8.01 0.17 2.88 14.11 8.02

50x10

0 70 0 100 0 60 0 100

8.98 0.13 4.01 0 9.97 0.93 4.99 0

0.39 3.12 14.27 8.37 0.4 3.11 14.3 8.34

50x20

0 80 0 100 0 90 0 100

9.95 0.04 5.53 0 9.07 0.01 5.44 0

1.19 3.85 14.71 9.13 1.16 3.85 14.74 9.13

Average

0 66.67 0 100 0 60 0 100

9.48 0.32 4.64 0 9.41 0.75 5.38 0

0.58 3.28 14.36 8.5 0.58 3.28 14.38 8.5

100x5

0 30 0 100 0 20 0 100

7.32 0.71 4.4 0 7.14 1.02 4.44 0

0.68 41.16 223.3 122.54 0.67 40.93 223.37 118.93

100x10

0 60 0 100 0 70 0 100

7.38 0.17 4.88 0 7.05 0.24 3.81 0

1.75 40.67 226.42 119.35 2.03 40.36 227.38 119.32

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

190

100x20

0 70 0 100 0 90 0 100

8.05 0.37 5.37 0 6.82 0.08 4.47 0

5.18 43.87 228.77 123.35 5.19 44.09 229.54 123.4

Average

0 53.33 0 100 0 60 0 100

7.58 0.42 4.89 0 7 0.44 4.24 0

2.54 41.9 226.16 121.75 2.63 41.8 226.76 120.55

200x10

0 40 0 100 0 30 0 100

6.37 0.59 4.21 0 5.59 0.56 3.44 0

6.87 613.21 3780.1 1853.66 7.03 618 3793.94 1836.08

200x20

0 60 0 100 0 60 0 100

6.55 0.09 3.45 0 5.7 0.09 3.15 0

21.19 632.35 3657.28 1846.33 21.13 633.6 3649.61 1844.22

Average

0 51.11 0 100 0 50 0 100

6.83 0.36 4.18 0 6.1 0.36 3.61 0

10.2 424.95 2554.51 1273.91 10.26 424.02 2556.77 1266.95

One interesting characteristics from the experimental
analysis is that the methods seem to be unaffected by
distribution of processing or setup times, i.e., there are no
better methods depending on the specific distribution of
processing or setup times.

Comparing GAPH with BIH, we observe that GAPH always
gets equal or better results than BIH. The minimum success
rate of GAPH was 90%, while the minimum of BIH was 20%.

With respect to the CPU time, TRIPS require much more

computational effort than GAPH and BIH. As it can be
observed in Tables 1 and 2, for the biggest problem analyzed
(200x20), the average CPU time of TRIPS was nearly 3660s,
while TRIPS required nearly 630s and GAPH required nearly
1850s.

Finally, our proposal heuristic is statistically better than
the rest of the heuristics, although it is more time consuming
than BIH. GAPH always gets the better result, and is more
efficient than TRIPS.

Table 3 - Comparison of results in Taillard´s testbed SSD-10 and SSD-50 (Total Flowtime)

SSD-10 SSD-50

n x m BAH BIH TRIPS QUARTS BAH BIH TRIPS QUARTS

20 x 5

0.00* 0.00 20.00 90.00 0.00 0.00 30.00 90.00

12.26** 7.55 0.71 0.09 11.49 6.69 0.41 0.17

0.02*** 0.08 0.32 0.41 0.02 0.09 0.32 0.41

20 x 10

0.00 0.00 20.00 100.00 0.00 0.00 10.00 100.00

11.45 6.22 0.53 0.00 9.04 5.01 0.62 0.00

0.05 0.09 0.32 0.43 0.05 0.10 0.32 0.43

20 x 20

0.00 0.00 30.00 90.00 0.00 10.00 20.00 80.00

10.18 4.87 0.44 0.00 8.44 5.23 0.47 0.14

0.14 0.19 0.36 0.47 0.15 0.19 0.36 0.48

Average

0.00 0.00 23.33 93.33 0.00 3.33 20.00 90.00

11.29 6.21 0.56 0.03 9.65 5.64 0.50 0.10

0.07 0.12 0.33 0.44 0.07 0.13 0.33 0.44

50 x 5

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

17.32 7.72 0.34 0.00 18.44 7.02 0.40 0.00

0.12 2.01 12.87 15.99 0.12 2.08 12.94 16.30

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

191

50 x 10

0.00 0.00 0.00 100.00 0.00 0.00 20.00 80.00

20.24 7.90 0.39 0.00 17.64 6.90 0.24 0.11

0.31 2.35 13.00 16.65 0.31 2.27 13.07 16.75

50 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

18.51 6.95 0.68 0.00 17.08 6.07 0.64 0.00

0.92 2.86 13.98 16.91 0.91 2.84 14.27 17.16

Average

0.00 0.00 0.00 100.00 0.00 0.00 6.67 93.33

18.69 7.52 0.47 0.00 17.72 6.66 0.43 0.04

0.45 2.41 13.28 16.52 0.45 2.40 13.43 16.74

100 x 5

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

22.93 8.11 0.27 0.00 24.94 6.85 0.17 0.00

0.50 32.12 217.34 258.54 0.51 32.78 215.95 259.79

100 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

24.09 7.20 0.52 0.00 21.25 6.14 0.46 0.00

1.25 33.01 216.13 265.60 1.26 32.48 216.72 265.86

100 x 20

0.00 0.00 10.00 90.00 0.00 0.00 10.00 90.00

25.07 6.06 0.36 0.21 20.88 5.07 0.26 0.04

3.70 35.35 218.32 265.61 3.72 35.70 218.47 268.15

Average

0.00 0.00 3.33 96.67 0.00 0.00 3.33 96.67

24.03 7.12 0.39 0.07 22.36 6.02 0.30 0.01

1.82 33.49 217.26 263.25 1.83 33.65 217.05 264.60

200 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

28.80 6.27 0.21 0.00 26.12 5.47 0.34 0.00

5.15 511.98 3494.11 4133.52 5.17 513.02 3490.31 4130.08

200 x 20

0.00 0.00 10.00 90.00 0.00 0.00 0.00 100.00

31.86 6.04 0.13 0.04 27.83 5.83 0.09 0.00

14.90 515.71 3537.08 4164.64 14.82 515.82 3517.09 4158.26

Average

0.00 0.00 5.00 95.00 0.00 0.00 0.00 100.00

30.33 6.16 0.17 0.02 26.97 5.65 0.22 0.00

10.03 513.85 3515.60 4149.08 10.00 514.42 3503.70 4144.17

Table 4 - Comparison of results in Taillard´s testbed SSD-100 and SSD-125 (Total Flowtime)

SSD-100 SSD-125

n x m BAH BIH TRIPS QUARTS BAH BIH TRIPS QUARTS

20 x 5

0.00 0.00 30.00 100.00 0.00 0.00 70.00 100.00

15.47 5.21 0.38 0.00 17.89 7.11 0.29 0.00

0.02 0.08 0.32 0.42 0.02 0.09 0.32 0.43

20 x 10

0.00 0.00 30.00 90.00 0.00 0.00 30.00 90.00

10.57 5.79 0.55 0.02 11.05 5.80 0.34 0.20

0.05 0.09 0.33 0.43 0.05 0.09 0.32 0.44

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

192

20 x 20

0.00 0.00 40.00 90.00 0.00 0.00 10.00 100.00

8.57 4.66 0.34 0.00 8.96 4.54 0.32 0.00

0.14 0.20 0.36 0.47 0.14 0.20 0.36 0.48

Average

0.00 0.00 33.33 93.33 0.00 0.00 36.67 96.67

11.54 5.22 0.43 0.01 12.63 5.82 0.32 0.07

0.07 0.12 0.34 0.44 0.07 0.13 0.33 0.45

50 x 5

0.00 0.00 10.00 100.00 0.00 0.00 60.00 70.00

25.77 7.76 0.29 0.00 27.32 8.15 0.24 0.46

0.12 2.04 12.97 16.67 0.13 2.05 12.96 16.55

50 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

19.1 6.58 0.24 0.00 19.69 6.80 0.30 0.00

0.31 2.29 13.11 16.82 0.31 2.22 13.10 16.93

50 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

16.28 4.78 0.30 0.00 15.37 4.83 0.24 0.00

0.92 2.87 14.26 17.25 0.92 2.85 14.10 17.47

Average

0.00 0.00 3.33 100.00 0.00 0.00 20.00 90.00

20.38 6.37 0.28 0.00 20.79 6.59 0.26 0.15

0.45 2.40 13.45 16.91 0.45 2.37 13.39 16.98

100 x 5

0.00 0.00 0.00 100.00 0.00 0.00 30.00 100.00

30.5 6.37 0.13 0.00 33.78 6.68 0.05 0.00

0.50 33.21 215.57 265.68 0.51 32.97 218.75 267.20

100 x 10

0.00 0.00 0.00 100.00 0.00 0.00 10.00 90.00

23.51 5.69 0.16 0.00 23.67 6.08 0.12 0.06

1.27 32.70 217.09 269.60 1.27 32.78 217.73 271.06

100 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

19.67 4.71 0.22 0.00 18.91 4.27 0.16 0.00

3.71 34.97 219.34 269.38 3.72 35.02 218.98 270.50

Average

0.00 0.00 0.00 100.00 0.00 0.00 13.33 96.67

24.56 5.59 0.17 0.00 25.45 5.68 0.11 0.02

1.83 33.63 217.33 268.22 1.83 33.59 218.48 269.58

200 x 10

0.00 0.00 20.00 80.00 0.00 0.00 0.00 100.00

27.88 5.17 0.07 0.04 28.71 5.69 0.05 0.00

5.18 511.11 3502.32 4158.17 5.15 512.84 3522.19 4165.47

200 x 20

0.00 0.00 0.00 100.00 0.00 0.00 20.00 80.00

24.30 5.27 0.09 0.00 24.30 5.27 0.09 0.00

14.91 514.98 3528.10 4166.21 14.87 515.03 3518.97 4178.01

Average

0.00 0.00 10.00 90.00 0.00 0.00 10.00 90.00

26.09 5.22 0.08 0.02 26.50 5.48 0.07 0.00

10.05 513.05 3515.21 4162.19 10.01 513.94 3520.58 4171.74

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194

DOI: 10.14488/BJOPM.2015.v12.n2.a1

193

As can be seen from the results in Tables 3 and 4,
QUARTS heuristic obtains better results than the rest of
the constructive heuristics. The success rate of QUARTS is
superior to all heuristics, in all problems tested. QUARTS
obtained the best solution in 95.23% of all problems tested,
while TRIPS only obtained the best solution in 12.27% of
them. We observed that TRIPS success rate decays with
the increase of the number of jobs, indicating that this
method works better for small problems. BAH and BIH are
not competitive with the other heuristics tested. All success
rates for BAH were zero, and BIH only got the best solution
once.

Considering the ARPD, BAH has the highest values. Its
ARPD exceeds 30% in some cases. The second method with
the highest ARPD is BIH, with an ARPD of 5% in average.
Analyzing TRIPS, we can see that its higher ARPD is 0.71%,
and its ARPD average is 0.31%. Despite TRIPS success rate
decays with the increase of jobs, its ARPD shows that the
method gets better results with the increase of jobs. Its
ARPD decays with the increase of jobs. The ARPD analysis
ratifies the superiority of QUARTS, regarding the solution
quality. Its ARPD average is 0.04%, about 8 times lower than
TRIPS.

With respect to the CPU time, BAH is the fastest method,
followed by BIH. The average CPU time of BAH was about
2.5s, while BIH required nearly 104s. Comparing TRIPS and
QUARTS, we can see that TRIPS is a little faster than QUARTS.
The average CPU time of TRIPS was about 702s, while
QUARTS required 833s. As we can see in Tables 3 and 4, the
CPU time of both methods always have the same order of
precision. So, the difference between them is not significant.

Finally, among the four methods evaluated in this
computational experiment for the total flow time criteria,
we can see that QUARTS is the better one, regarding the
solution quality. In average, its success rate is 95.10% and
its ARPD is 0.04%, while the methods BAH, BIH and TRIPS
have success rates of 0%, 0.23% and 12.27% and ARPDs of
19.93%, 6.10% and 0.31%, respectively. With respect to the
CPU time, although TRIPS is a little bit faster than QUARTS,
this difference is insignificant. Thus, we can conclude that
QUARTS is the better constructive heuristic for the total flow
time criteria.

CONCLUSION

In this paper, we dealt with the problem of scheduling
a no-wait flow shop with sequence-dependent setup times
with both make span and total flow time objectives by means
of constructive heuristics. We presented two new heuristics,
named GAPH and QUARTS, for the make span and total
flow time criteria, respectively, and carried out extensive
computational experiment. The results showed that GAPH

and QUARTS get better results than the other constructive
heuristics tested. Henceforth, it can be concluded that the
proposed heuristics obtain high solution quality comparing
to the existing constructive heuristics for the problems, in
acceptable computational times.

ACKNOWLEDGMENT

The research of the first author is partially supported
by The State of São Paulo Research Foundation (FAPESP)
under grant number 09/06832-2. The research of the
second author is partially supported by a grant number
473654/2009-1 from the National Council for Scientific and
Technological Development (CNPq), Brazil.

REFERENCES

Aldowaisan, T. (2001). A new heuristic and dominance
relations for no-wait flowshops with setups, Computers &
Operations Research, 28 (6), 563-584.

Allahverdi, A. & Aldowaisan, T. (2001). Minimizing total
completion time in a no-wait flowshop with sequence-
dependent additive changeover times, Journal of the
Operational Research Society, 52 (4), 449-462.

Allahverdi, A., Ng, C.T., Cheng, T.C.E. & Kovalyov, M.Y.
(2008). A survey of scheduling problems with setups times
or costs, European Journal of Operational Research, 187 (3),
985-1032.

Allahverdi, A. & Soroush, H.M. (2008). The significance
of reducing setup times/setup costs, European Journal of
Operational Research, 187 (3), 978-984.

Bianco, L., Dell’Olmo, P. & Giordani, S. (1999). Flow shop
no-wait scheduling with sequence-dependent setup times
and release dates, INFOR Journal, 37 (1), 3-19.

Brown, S.I., Mcgarvey, R. & Ventura, J.A. (2004). Total
flowtime and makespan for a no-wait m-machine flowshop
with set-up times separated, Journal of the Operational
Research Society, 55 (6), 614-621.

França, P.M., Tin Jr, G. & Buriol, L.S. (2006). Genetic
Algorithms for the no-wait flowshop sequencing problem
with time restrictions, International Journal of Production
Research, 44 (5), 939-957.

Gupta, J.N.D. (1986). Flowshop schedules with sequence-
dependent setup times, Journal of Operations Research
Society of Japan, 29 (3), 206-219.

Ruiz, R., Maroto, C. & Alcaraz, J. (2005). Solving the
flowshop scheduling problem with sequence-dependent
setup times using advanced metaheuristics, European
Journal of Operational Research, 165 (1), 34-54.

Brazilian Journal of Operations & Production Management
Volume 12, Número 2, 2015, pp. 180-194
DOI: 10.14488/BJOPM.2015.v12.n2.a1

194

Stafford Jr, E.F. & Tseng, F.T. (1990). On the Srikar-
Ghosh MILP model for the NxM SDST flowshop problem,
International Journal of Production Research, 28 (10), 1817-
1830.

Stafford Jr, E.F. & Tseng, F.T. (2002). Two models for a
family of flowshop sequencing problems, European Journal
of Operational Research, 142 (2), 282-293.

Taillard, E. (1993). Benchmarks for basic scheduling
problems, European Journal of Operational Research, 64 (2),
278-285.

