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Abstract
In this article, we consider a non-central chi-square chart with double sampling 

(DS χ2 chart) to control the process mean and variance. As in the case of Shewhart control 

charts, samples of fi xed size are taken from the process at regular time intervals; however, 

the sampling is performed in two stages. Let X be the process quality variable being 

measured. During the fi rst stage, one item of the sample is inspected; if its X value is close 

to the target value of the process mean, then the sampling is interrupted. Otherwise, the 

sampling goes on to the second stage, where the remaining items are inspected and a 

non-central chi-square statistic, say T, is computed taking into account all n items of the 

sample, that is, their X values. A signal is triggered when the sample point given by the 

T value falls above the upper control limit of the proposed chart. The DS χ2 chart performs 

better than the joint X and R charts, except when there is a large change in the process 

mean. Furthermore, if the DS χ2 chart is used for monitoring diameters, volumes, weights, 

etc., then the employment of appropriate devices, such as go-no-go gauges can reduce the 

effort to decide if the sampling should go to the second stage or not.

Keywords: non-central chi-square chart, double sampling, joint X and R charts

Introduction
The Standard Shewhart control chart has been widely used for process surveillance 

because of its operational simplicity. However, this operational simplicity, that is, taking 
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samples of size n from the process every h hours and searching for an assignable cause only 

when a point falls outside the control limits, makes the Shewhart chart slow in detecting 

small to moderate changes in the process parameter being controlled.

Among various statistical devices, specially designed to detect process changes quickly, 

is the adaptive control chart. A control chart is considered adaptive if at least one of its design 

parameters (that is, the sample size, the sampling interval, the coeffi cient of the control 

limit) varies as a function of the process data. For example, if the sample size is variable, then 

the position of each sample point on the chart establishes the size of the next sample (see 

Costa, 1994, or Epprecht and Costa, 2001). When this point falls inside the control limits, but 

near of one of them, it is reasonable to tighten the control by increasing the size of the next 

sample. On the other hand, if the sample point falls near the central line, it is reasonable to 

relax the control by decreasing the size of the next sample. The idea of varying the sample 

size (VSS) in an adaptive fashion can be applied to all chart’s design parameters, including h, 

the sampling interval (see Costa, 1999a, or Epprecht et al., 2003), even though the logistical 

problem associated with the lack of fi xed sampling points makes the use of variable sampling 

intervals (VSI) awkward. The number of samples in any given time period will be a random 

variable, and the time points at which the samples are taken will be unpredictable. Reynolds 

(1996a,b), Costa (1998a), and Lin and Chou (2005) considered a modifi cation of the VSI idea. 

In this modifi cation, samples are always taken at some fi xed, equally-spaced time points, but 

additional samples are allowed between these time points whenever there is some indication 

of a process change. The charts using this modifi cation of the VSI idea are called variable 

sampling interval with sampling at fi xed times (VSIFT) control charts.

The results from published articles on adaptive control charts (see for example, Reynolds 

et al., 1988, 1990; Runger and Pignatiello, 1991; Saccucci et al., 1992; Amin and Miller, 

1993; Runger and Montgomery, 1993; Prabhu et al., 1993, 1994, 1997; Costa, 1994, 1997, 

1999a; Park and Reynolds, 1994, 1999; Das et al., 1997; De Magalhães et al., 2001, 2002) 

demonstrate that the adoption of adaptive schemes instead of fi xed schemes can bring 

considerable economic benefi ts once their use leads to a better trade-off between the time 

to detect a process disturbance and the sampling rate required to control the process.

Double sampling (or two stage sampling) procedures combined with control charts 

is other alternative that has been used to improve the performance of the traditional 

Shewhart charts. The control charts where the samplings are performed in two stages (see 

Croasdale, 1974; Daudin, 1992; Steiner, 1999; Costa, 2000; Costa and Rahim, 2004) are, 

usually, faster than the standard Shewhart control charts to detect small to moderate shifts 

in the parameter process being controlled, without increasing the sampling frequency. 

During the fi rst stage, one or more items of the sample are inspected and, depending on 

the results, the sampling is either interrupted or it goes on to the second stage, where the 

remaining sample items are inspected.
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In recent years, considerable attention has been devoted to joint charts for monitoring 
the process mean and variance. For instance, Costa and Rahim (2000); and Rahim and Costa 
(2000) developed economic models to the joint  X and R charts. Gan (1995) considered 
the joint EWMA charts; Albin et al. (1997) studied an X and an EWMA chart for individual 
observations. Chen et al. (2001) combined two EWMA charts into one chart and showed that 
the new EWMA chart is effective in detecting both increases and decreases in the process 
mean and/or variance. In the adaptive case, Costa (1998b, 1999b), and De Magalhães and 
Moura Neto (2005) studied the joint X and R charts with variable parameters. Reynolds and 
Stoumbos (2001) have investigated three joint charts for monitoring the mean and the 
variance of a normal quality variable using individual observations and variable sampling 
intervals. From these studies, one can observe that the joint charts are not totally reliable 
in identifying the nature of the disturbance. For example, if the joint X and R charts are 
in use, and the X chart signals the presence of an assignable cause, then it should be 
investigated which process parameter the assignable cause is affecting due to the fact 
that the X chart is not only sensitive to a shift in the process mean but also is sensitive to 
an increase in the process variance. 

We propose in this paper the use of the double-sampling procedure with a non-central 
chi-square statistic to control the process mean and variance. As in the case with Shewhart 
charts, samples of fi xed size are taken from the process at regular time intervals; however, the 
sampling is performed in two stages. Let X be the process quality variable being measured. 
During the fi rst stage, one item of the sample is inspected; if its X value is close to the target 
value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes 
on to the second stage, where the remaining items are inspected and a non-central chi-
square statistic, say T, is computed taking into account all m items of the sample, that is, 
their X values. A signal is triggered when the sample point given by the T value falls above 
the upper control limit of the proposed chart. The performance of the proposed chart (DS χ2 

chart) is better than the joint X and R charts, except when there is a large change in the 
process mean. Furthermore, if the DS χ2 chart is used for monitoring diameters, volumes, 
weights, etc., then the employment of appropriate devices, such as go-no-go gauges can 
reduce the effort to decide if the sampling should go to the second stage or not.

The Properties of the Non-Central Chi-Square Chart with Double Sampling
Throughout this article, it is assumed that the non-central chi-square chart with double 

sampling (DS χ2 chart) is employed to monitor a process whose quality characteristic of 
interest (say, X) is normally distributed with mean μ and variance σ2. The process is 
considered to start with the mean and the variance on target (μ = μ0; σ2 = σ2

0 ; in-control 
state), but at some random time in the future an assignable cause shifts the mean from μ0 
to μ1 = μ0 ± δσ0, δ > 0 and/or increases the variance from σ2

0 to σ2
1 = γ2σ2

0, γ > 1. The objective 
of process monitoring is the detection of any assignable cause that shifts μ and/or σ. 
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When there is a change in σ, it is usually assumed that the primary interest is in detecting 
increases in σ, because an increase corresponds to deterioration in quality.

The X and R charts are the traditional control charts used to detect changes in μ and 
σ, respectively. When two charts are used concurrently, a signal would be given if either 
chart indicates a possible occurrence of an assignable cause. For different values of δ and 
γ, Table 1 provides the probabilities PX, PR, and PX - R for samples of size n = 5 and α = 0.0027, 
the risk of a false alarme when the joint X and R charts are in use. When the joint charts 
produce a signal, PX is the probability that the signal was given only by the X chart, PR is 
the probability that the signal was given only by the R chart, and PX - R is the probability 
that the signal was given by both. From Table 1, one can observe that PX - R has always a 
low value, even when a shift in the mean is accompanied by an increase in the variance 
(δ ≠ 0 and γ > 1). So, the major contribution of the joint X and R charts is on the process 
change detection and not on the identifi cation of the nature of the change, whether the 
change is on the mean and/or on the variance. In practice, the speed with which the 
control charts detect process changes seems to be more important than their ability in 
identifying the nature of the change. Under these circumstances, it is advantageous to 
consider a single chart based on only one statistic to simultaneously monitor the process 
mean and variance. Domangue and Patch (1991), Gan (1995), and Chen et al. (2001 and 
2004) have already explored the idea of using single charts to control the two parameters 
of the process.

When the non-central chi-square chart with double sampling (DS χ2 chart) is in use, 
samples of size m = n0 + 1 are randomly chosen at regular time intervals. Let  Xij, i = 1,2,3,..., 
and j = 1,2,...,m be the measurements of the variable X arranged in groups of size m>1, with 
i indexing the group number. The samplings are performed in two stages. During the fi rst 

Table 1 – Values of P
X
, P

R
, and P

X
 
– R

 for the joint X and R charts (n = 5).

δ γ P
X

P
R

P
X
 
– R

δ γ P
X

P
R

P
X
 
– R

1.00 .4996 .4997 .0007 1.00 .9883 .0104 .0013

0.0 1.30 .3556 .6356 .0088 1.0 1.30 .8771 .1012 .0218

1.50 .3095 .6680 .0225 1.50 .7436 .2022 .0541

2.00 .2413 .6760 .0827 2.00 .4478 .3987 .1535

1.00 .9104 .0884 .0012 1.00 .9944 .0043 .0013

0.5 1.30 .6473 .3366 .0161 1.25 1.30 .9221 .0550 .0229

1.50 .5018 .4617 .0365 1.50 .8143 .1264 .0593

2.00 .3084 .5859 .1057 2.00 .5152 .3081 .1767

1.00 .9702 .0285 .0013 1.00 .9968 .0019 .0013

0.75 1.30 .7929 .1874 .0197 1.50 1.30 .9463 .0302 .0235

1.50 .6387 .3148 .0465 1.50 .8596 .0778 .0626

2.00 .3756 .4956 .1288 2.00 .5730 .2305 .1965
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stage, the fi rst item of the i-th sample is inspected. If its value, say Xi1, is close to the target 
value μ0 (that is, |Xi1-μ0| < wσ0, w > 0), then the sampling is interrupted. Otherwise, the 
second stage is initialized. During the second stage, the remaining n0 items are inspected 
and the non-central chi-square statistic is computed.

, , ,...T X i 1 2i ij i
j

m

0 0

2

1
n p v= - + =

=

_ i!  (1)

We defi ne ξi = d if  Xil > μ0; otherwise ξi = -d, where d is a positive constant. Note that Ti 
is computed taking into account all m items of the sample, that is, their X values, including 
Xi1, the quality characteristic value from the item inspected during the fi rst stage. A signal 
is given at sample i if |Xi1 - μ0|> wσ0 and Ti > kσ2

0, where k is the factor used in determining 
the upper control limit for the non-central chi-square chart. During the in-control period,  
Ti/σ2

0 is distributed as a non-central chi-square distribution with m degrees of freedom 
and a non-centrality parameter λ0 = nd2, i.e. Ti/σ2

0 ≈ χ
2

n(λ0). During the out-of-control 
period, Ti/σ2

1 is distributed as a non-central chi-square distribution with m degrees 
of freedom and a non-centrality parameter λ1; being λ1 = m(δ + d)2 if ξi = d, otherwise 
λ1 = m(δ − d)2/γ2

 . If devices such as go and no-go gauges can be used, then measurements 
are not required except when the sampling goes to the second stage. The proposed sampling 
procedure is highly recommended for processes where such devices can be employed. During 
the in-control period, the rate of inspected items per sampling, n, is given by:

n = 1 + n
0
[2Φ(–w)] (2)

If the parameters n0 and w are designed to make n equal to n, the size of the samples 
when the joint X and R charts are in use, then the joint charts and the DS χ2 chart will 
demand the same average number of items (ANI) to be inspected.

Let Q be the probability of deciding that the process is out of control:

Q = Pr [(|X
i1 

– μ
0
| > wσ

0
) ∩ (T

i
 > kσ2

0
)] (3)

The effectiveness of a control chart in detecting a process change can be measured 
by the average run length (ARL), which is the expected number of samples drawn until 
the chart gives a signal. The number of samples drawn until a signal is a geometrically 
distributed random variable with parameter Q. Usually, the process starts in control and 
some time in the future an assignable cause shifts the process mean and/or increases the 
process variance. This assumption was assumed for the developed model. When a process 
is in control, it is desirable that the average number of samples taken since the beginning 
of monitoring until a signal (ARL0) be large; this guarantees few false alarms. The 
ARL0 = α

-1, where α is the type I error probability. The ARL0 was chosen to be 433.0 (the 
same value adopted by Costa and Rahim, 2004). When a process is out of control, it is 
desirable that the average number of samples taken since the occurrence of the assignable 
cause until a signal (ARL) be small, this guarantees fast detection of process changes. The 
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ARL = (1 – β)-1, being β the type II error probability. In the Appendix, we show how the 
Equation (3) can be used to obtain the false alarm risk (α) and the power (1 – β) of the 
DS χ2 chart.

Tables 2 and 3 provide the ARL for the DS χ2 chart and for the joint X and R charts. One 
can see from these tables that, in most of the cases, the DS χ2 chart always detects process 
changes faster (lower ARL) than the joint X and R charts. The exceptions occur in some 
cases when there is a large change in the mean (boldfaced values). For given n, m and d, 
the ARL for the joint X and R charts and DS χ2 chart decreases as δ and/or γ increases. One 
can see from both tables that the ARL value always decreases as n increases.

Table 2 – Values of the ARL for the joint X and R charts and for the DS χ2 chart (n = n = 3).

m = 6

w = 0.8416

m = 9

w = 1.15035

m = 12

w = 1.3352

D= 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

K= 25.1365 28.9010 33.3133 30.6900 35.4754 41.2003 35.8120 41.5380 48.4800

γ δ X – R* 

0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0

0.50 102.8 46.40 43.10 40.05 35.30 30.67 28.08 28.77 24.74 22.51

1.0 0.75 37.51 15.23 13.59 12.65 10.61 9.38 8.68 8.72 7.75 7.20

1.0 15.25 6.04 5.50 5.18 4.38 4.02 3.81 3.88 3.62 3.50

1.25 7.14 3.04 2.83 2.71 2.43 2.32 2.25 2.38 2.32 2.28

1.50 3.89 1.89 1.81 1.76 1.71 1.68 1.66 1.80 1.79 1.79

2.00 1.71 1.20 1.19 1.18 1.25 1.25 1.25 1.34 1.34 1.34

0 33.46 24.01 26.76 29.35 19.64 22.33 25.04 17.03 19.58 22.23

0.50 19.53 10.75 10.92 11.11 6.48 8.61 6.77 7.39 7.52 7.66

1.3 0.75 11.98 6.06 5.99 5.97 4.84 4.79 4.78 4.38 4.35 4.34

1.0 7.30 3.68 3.61 3.57 3.08 3.03 3.01 2.93 2.91 2.90

1.25 4.63 2.47 2.43 2.40 2.20 2.18 2.17 2.22 2.21 2.21

1.50 3.12 1.83 1.81 1.79 1.75 1.74 1.74 1.83 1.83 1.84

2.00 1.75 1.29 1.29 1.28 1.35 1.35 1.35 1.43 1.43 1.44

0 13.05 8.89 10.02 11.16 7.20 8.21 9.29 6.32 7.20 8.19

0.50 9.61 5.65 6.22 6.56 4.61 5.13 5.44 4.36 4.65 4.94

1.5 0.75 7.09 4.12 4.25 4.37 3.48 3.60 3.71 3.27 3.39 3.49

1.0 5.09 2.95 2.99 3.03 2.60 2.65 2.69 2.54 2.60 2.65

1.25 3.68 2.22 2.24 2.25 2.06 2.08 2.10 2.09 2.12 2.15

1.50 2.75 1.78 1.78 1.79 1.73 1.74 1.76 1.80 1.82 1.84

2.00 1.73 1.33 1.33 1.34 1.38 1.39 1.40 1.47 1.47 1.48

0 3.78 2.72 2.96 3.24 2.42 2.60 2.82 2.33 2.47 2.64

0.50 3.43 2.46 2.65 2.85 2.23 2.37 2.54 2.20 2.30 2.44

2.0 0.75 3.09 2.22 2.36 2.50 2.06 2.16 2.29 2.06 2.14 2.24

1.0 2.71 1.98 2.07 2.17 1.89 1.96 2.04 1.92 1.97 2.05

1.25 2.36 1.77 1.83 1.90 1.73 1.78 1.84 1.78 1.82 1.87

1.50 2.06 1.59 1.63 1.68 1.60 1.63 1.67 1.67 1.69 1.73

2.00 1.60 1.35 1.37 1.39 1.41 1.42 1.44 1.48 1.49 1.50

*X chart with control limits . /3 250 30 0!n v , and R chart with upper control limit 5.009 σ
0
.
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It can be observed from Table 2 that for large disturbances in the mean 
(δ = 2.0 and in some cases δ = 1.5), the ARL value increases as m increases. The choice of 
d affects the speed with which the DS χ2 chart signals. In general, larger values of d are 
better for detecting shifts in μ with σ = σ0, and worse for detecting increases in σ with 
μ = μ0. For example, one can see from Table 3, when δ = 0.5, γ = 1.0, as 
d increases, the ARL value decreases from 28.94 to 24.74 to 22.42, for m = 10; from 
20.66 to 17.38 to 15.62, for m = 15; from 22.70 to 16.82 to 14.15, for m = 20. On the other 
hand, when δ = 0, γ = 1.5, as d increases, the ARL value increases from 5.85 to 6.77 to 7.77, 
for m = 10; from 4.77 to 5.50 to 6.36, for m = 15; from 3.85 to 4.28 to 4.88, for m = 20.

Table 3 – Values of the ARL for the joint X and R charts and for the DS χ2
 
chart (n = n = 5).

m = 10

w = 0.7665

m = 15

w = 1.0676

m = 20

w = 1.2521

* D = 0.5 0.7 0.9 0.5 0.7 0.9 0.3 0.5 0.7

K = 33.3743 38.6042 44.8822 41.9790 48.7906 57.1134 43.9203 50.0360 58.3310

γ δ X – R*

0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0 433.0

0.50 56.59 28.94 24.74 22.42 20.66 17.38 15.62 22.70 16.82 14.15

1.0 0.75 16.94 8.26 7.21 6.62 6.02 5.31 4.92 6.38 5.26 4.74

1.0 6.39 3.37 3.07 2.90 2.79 2.62 2.53 3.00 2.78 2.69

1.25 3.07 1.92 1.82 1.77 1.86 1.82 1.80 2.05 2.03 2.02

1.50 1.84 1.41 1.38 1.37 1.51 1.51 1.50 1.67 1.67 1.67

2.00 1.12 1.12 1.12 1.12 1.21 1.21 1.21 1.29 1.29 1.29
0 26.24 16.53 19.09 21.69 13.13 15.42 17.88 9.66 11.25 13.28

0.50 13.23 6.81 6.92 7.05 5.50 5.60 5.70 4.89 4.99 5.11

1.3 0.75 7.33 3.85 3.81 3.79 3.31 3.30 3.29 3.20 3.22 3.24

1.0 4.20 2.46 2.43 2.41 2.31 2.31 2.30 2.37 2.40 2.42

1.25 2.63 1.80 1.79 1.78 1.83 1.84 1.84 1.95 1.97 2.00

1.50 1.84 1.47 1.47 1.47 1.57 1.58 1.59 1.70 1.71 1.72

2.00 1.20 1.20 1.20 1.21 1.30 1.30 1.31 1.38 1.38 1.38
0 9.46 5.85 6.77 7.77 4.77 5.50 6.36 3.85 4.28 4.88

0.50 6.62 3.87 4.16 4.43 3.34 3.59 3.83 3.00 3.19 3.43

1.5 0.75 4.67 2.80 2.92 3.01 2.56 2.68 2.78 2.48 2.58 2.71

1.0 3.25 2.11 2.17 2.21 2.07 2.13 2.18 2.11 2.17 2.25

1.25 2.33 1.70 1.74 1.76 1.76 1.80 1.84 1.86 1.89 1.94

1.50 1.77 1.46 1.49 1.50 1.57 1.59 1.62 1.68 1.69 1.71

2.00 1.24 1.23 1.24 1.25 1.33 1.34 1.35 1.42 1.42 1.42
0 2.64 1.97 2.13 2.33 1.90 2.00 2.14 1.94 1.97 2.03

0.50 2.41 1.83 1.96 2.11 1.81 1.90 2.01 1.87 1.90 1.95

2.0 0.75 2.17 1.70 1.80 1.92 1.73 1.79 1.88 1.81 1.83 1.87

1.0 1.92 1.58 1.65 1.73 1.64 1.69 1.76 1.74 1.75 1.78

1.25 1.69 1.46 1.51 1.58 1.55 1.59 1.64 1.66 1.66 1.68

1.50 1.50 1.37 1.41 1.45 1.48 1.50 1.53 1.58 1.58 1.59
2.00 1.23 1.25 1.26 1.28 1.35 1.36 1.37 1.43 1.43 1.44

* X chart with control limits . /3 250 50 0!n v , and R chart with upper control limit 5.432 σ
0
.
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The performance of a control chart can also be measured by the sampling rate. When the 
joint X and R charts are in use, the sampling rate is given by n (the sample size), and when 
the DS χ2 chart is in use, the sampling rate is given by n (see Equation 2). Like the ARL, the 
sampling rate can be used to compare two charts. To keep the comparison meaningful, the 
two charts should offer the same protection against false alarms by having the same ARL0. 
For specifi ed types of process changes, the control chart with the best performance is the 
one with the lowest sampling rate and best ability of detection. One can see from Table 4 
that the DS χ2 chart is an interesting alternative to the joint X and R charts, if the aim is 
the reduction of the sampling rate. For example, one can see from Table 4, when n = 3.0, 
δ = 1.0, and γ = 1.3, the DS χ2 chart leads to a better trade-off between the time to detect 
the process change and the sampling rate required to control the process, that is lower ARL 
(5.01 against 7.30), and lower Sampling Rate (1.5 against 3.0).

The Design of the Non-Central Chi-Square Chart with Double Sampling
The use of the DS χ2 chart requires the specifi cation of d, n0, n, and k. According to 

Equation (2), w is a function of n and n0. If the practitioners have some idea about the 

Table 4 - Values of the ARL for the joint X and R charts and for the DS χ2 chart (n ≠ n).

γ δ X – R
n = 3.0

DS χ2

 chart

n = 1.5; m = 7; d = 0.25

w = 1.7317; k = 21.8140

X – R
n = 5.0

DS χ2

 chart

n = 3.0; m = 11; d = 0.30

w = 1.2816; k = 30.0043

1.0 0 433.0 433.0 433.0 433.0

0.50 102.8 67.58 56.59 39.12

0.75 37.51 22.43 16.94 11.31

1.0 15.25 9.12 6.39 4.56

1.25 7.14 4.62 3.07 2.53

1.50 3.88 2.87 1.84 1.80

1.3 0 33.46 23.90 26.24 15.59

0.50 19.53 12.85 13.23 7.64

0.75 11.98 7.85 7.33 4.60

1.0 7.30 5.01 4.20 3.02

1.25 4.63 3.45 2.63 2.22

1.50 3.12 2.57 1.84 1.80

1.5 0 13.05 9.41 9.46 5.85

0.50 9.61 6.86 6.62 4.23

0.75 7.09 5.15 4.67 3.22

1.0 5.09 3.86 3.25 2.51

1.25 3.68 2.99 2.33 2.05

2.0 0 3.78 3.28 2.64 2.25

0.50 3.43 3.04 2.41 2.12

0.75 3.09 2.79 2.17 1.99

1.0 2.71 2.54 1.92 1.86

1.25 2.36 2.29 1.69 1.69

1.50 2.06 2.06 1.50 1.51
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Table 5 – The ARL and the optimum design parameters for the DS χ2 charts, n = n = 3.
δ = 0 δ = 0.5 δ = 1.0

γ γ γ
n

0
w d k 1.00 1.25 1.50 1.00 1.25 1.50 1.00 1.25 1.50

15 0 27.580 433 16.8 4.83 66.2 8.99 3.88 6.01 3.47 2.62

15 1 50.649 433 29.6 7.78 18.2 7.91 4.79 3.52 3.07 2.77

15 1.501 0.6 36.628 433 22.8 6.05 22.1 7.83 4.26 3.70 3.09 2.66

15 0.1 27.855 433 17.0 4.87 48.8 8.42 3.84 5.02 3.28 2.56

13 1.423 1 45.936 433 31.1 8.18 19.6 8.25 4.89 3.43 2.99 2.70

10 1.282 1 38.667 433 34.01 9.03 23.2 9.15 5.20 3.47 2.97 2.66

10 0.3 23.424 433 22.2 5.85 39.1 9.28 4.23 4.56 3.19 2.51

Standard X and R charts 433 45.40 13.10 103.00 23.80 9.61 15.30 8.08 5.09

Boldfaced ARL is the minimum one for the specifi ed δ and γ (for which the minimization was per-

formed).

disturbances the process is subject to, then they can use Tables 5 and 6 for selecting 
the design parameters. These tables provide the values of d, n0, and k that minimize the 
average number of samples required to signal δ standard deviation shifts in the process 
mean accompanied by 100(γ2 - 1)% of process variance increase under the constraints that 
α ≈ 0.0023, n = 3, 3 < n0 ≤ 15, and d ≤ 1 (Table 5), or n = 5, 5 < n0 ≤ 20, and d ≤ 1 (Table 6). 
For example, Table 6 shows that shifts in the process mean equal to half standard deviation 
(δ = 0.5), accompanied by 56.25% process variance increase (γ = 1.25) are detected faster 
when d = 0.6, n0 = 20, and k = 55.6274.

Comparing Charts
It seems reasonable to compare the DS χ2 chart and the two-stage sampling (TSS) X and 

R charts in terms of the speed with which they detect process disturbances. When the TSS 
X and R charts are in use, samples of size m = n0 + 1 are taken from the process at regular 

Table 6 – The ARL and the optimum design parameters for the DS χ2 charts, n = n = 5.

δ = 0 δ = 0.5 δ = 1.0

γ γ γ
n

0
w d k 1.00 1.25 1.50 1.00 1.25 1.50 1.00 1.25 1.50

20 0 40.8006 433 12.1 3.57 52.6 6.43 2.94 4.23 2.65 2.14

20 1 76.8562 433 23.5 5.90 11.9 5.73 3.74 2.67 2.49 2.36

20 1.282 0.6 55.6274 433 17.3 4.49 14.8 5.68 3.30 2.76 2.50 2.23

20 0.1 41.5770 433 12.3 3.59 37.0 6.02 2.92 3.56 2.54 2.12

15 1.111 1 64.3750 433 26.5 6.62 14.3 6.27 3.88 2.50 2.34 2.21

15 0.2 36.4343 433 14.9 3.94 32.9 6.51 3.02 3.39 2.46 2.02

Standard X and R charts 433† 36.7 9.50 56.6 16.2 6.62 6.39 4.48 3.25

Boldfaced ARL is the minimum one for the specifi ed δ and γ (for which the minimization was per-

formed).
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time intervals. The sampling is performed in two stages. During the fi rst stage, the fi rst 
item of the sample is inspected. If its X value is close to the target value (|X – μ0|< wσ0, 
w > 0), then the sampling is interrupted. Otherwise, the sampling goes on to the second 
stage, where the remaining n0 items are inspected and the X and R values are computed. 
The signal is given by an X value beyond the control limits ( /k nX0 0 0!n v ) and/or by an 
R value above the upper control limit, kR(n0)σ0. The sample values can be computed taking 
into account all m values (DS procedure), or only the remaining n0 values (TSS procedure). 
The DS charts are more effective in detecting process disturbances. This result is intuitive, 
once the DS scheme makes better use of the sample information. Table 7 provides the 
ARL for the DS χ2 chart and for the TSS X and R charts. One can see from this table that 
the chi-square chart competes with the joint charts. Thus, a single chart can be used for 
monitoring both the process mean and variance.

Very recently, Reynolds and Stoumbos (2004) investigated the use of two EWMA 
charts or two CUSUM charts for monitoring the mean and the variance. In their study, the 
EWMAX chart for detecting changes in μ is based on the control statistic

EX
k
 = (1 – λ)EX

k-1
 + λX

k 
, k = 1, 2,..., (4)

where: λ is a tuning parameter satisfying 0 < λ ≤ 1 and the starting value is usually taken 
to be EX

0 = μ0. A signal is given at sample k if EX
k falls outside the control limits

/( ( ))h n 2EX0 0!n m m v-  (5)

where: /( ( ))n 2 0m m v-  is the asymptotic in-control standard deviation of EX
k. The 

EWMAX2 chart for detecting changes in σ is based on the control statistic 

 ( ) , , , ,...,maxE E n
X

k1 1 2k
X

k
X ki

i

n

1 0
2 0

2

1

2 2

m v m
n

= - +
-

=-

=

_ i
$ . !  (6)

where: EX2

0      = σ2
0  . A signal is given at sample k if EX2

0       falls above the control limit

/( ( ))h n2 2EX0
2

0
2

2v m m v+ -  (7)

Table 7 – Values of the ARL for the TSS X and R Charts and for the DS χ2

 
chart (n = n = 5; n0 = 14; 

w = 1.068).

TSS X and R charts*
kX = 2.873; kR(n0) = 5.725

DS χ2
 
chart

k = 42.6115; d = 0.7

δ δ
γ 0.00 0.50 0.75 1.00 1.25 1.50 γ 0.00 0.50 0.75 1.00 1.25 1.50

1.0 433.0 18.01 5.13 2.51 1.78 1.49 1.0 433.0 17.38 5.17 2.62 1.82 1.51

1.3 19.29 7.50 3.88 2.42 1.82 1.55 1.3 15.42 5.60 3.30 2.31 1.84 1.58

1.5 6.57 4.33 3.02 2.22 1.79 1.56 1.5 5.50 3.59 2.68 2.13 1.80 1.59

2.0 2.13 1.99 1.85 1.71 1.59 1.49 2.0 2.00 1.90 1.79 1.69 1.59 1.50

*ARL values tabulated in Costa and Rahim (2004).
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The CUSUMX chart for detecting changes in μ is based on two separate one-side CUSUM 
statistics. The upper CUSUM statistic for detecting increases in μ is 

, / , , ,...,maxC C X k0 2 1 2k
X

k
X

k1 0 0n g v= + - - =n
+

-

+
_ i# -  (8)

and the lower CUSUM statistic for detecting decreases in μ is:

, / , , ,...,minC C X k0 2 1 2k
X

k
X

k1 0 0n g v= + - + =n
-

-

-
_ i# -  (9)

The initial values for the statistics are CX+
0        = CX-

0         = 0. The chart parameter ζμ is defi ned as 
ζμ = |μ1 – μ2|/σ, where μ1 is an out-of-control value of μ that should be detected quickly.

The chart signals if: 

> /C h nk
X

CX 0v+  or < /C h nk
X

CX 0v-
-  (10)

The CUSUMX2 chart for detecting changes in σ is based on the control statistic:

, , , ,...,maxC C n
X n k0

1
21 1 2k

X
k
X ki

1
0

2

2 0
22 2 n

g
g

v= +
-

-
-

=
v

v
- -

_
f

i
p$ . !  (11)

where CX2

0 = 0 and the upper control limit is 

h
CX

2 σ2
0
/n (12)

The chart parameter ζσ is defi ned as ζσ = σ1/σ0, where σ1 (σ1 > σ0) is a value of σ that 
should be detected quickly.

Comparing the EWMA and the CUSUM chart combinations with the corresponding 
DS Chi-square chart in Table 8 shows that the EWMA and the CUSUM chart combinations are 
better for small shifts in μ, but the DS χ2 chart is equivalent or slightly better for changes 
in σ ranging from γ = 1.25 to γ = 3.00.  

Illustrative Example
The joint X and R charts have been used to monitor the diameter of shafts. As the 

specifi cations of the diameters (0.7500 ± 0.0030 inches) are very tight, a minor shift in the 
process mean accompanied by increases in the variance leads to the manufacturing of a 
large number of shafts with diameters beyond the specifi cations. Past data show that the 
standard deviation (σ) of the diameters, originally stable at σ0 = 0.0012 inches, increases 
when the process mean goes off-target. The parameters of the joint charts are n = 3, 
kX = 3.250 and kR(n) = 5.009. The Double Sampling Non-Central Chi-Square Chart was 
designed to replace the joint charts. At the fi rst stage, one item of the sample is 
inspected. If its X value belongs to the interval μ0 ± wσ0 (w = 1.3352), then the sampling 
is interrupted. Otherwise, at the second stage, the remaining sample items are inspected, 
T X j 0 0

2
n pv= - +_ i!  is computed and its value is plotted on the Non-Central Chi-Square 

Chart with k = 41.5380 (m = 12; d = 0.7).
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From Table 2, one can see that the DS χ2 chart detects process disturbances faster than 

the joint X and R charts. For instance, to detect mean shifts of half standard deviation 

(δ = 0.5) accompanied by 69% of process variance increase (γ = 1.3), the DS χ2 chart, with 

n0 = 11 and d = 0.7, requires, on average, 7.52 samples (ARL = 7.52), against 19.53 samples 

(the ARL value for the joint X and R charts with n = 3, kX = 3.250 and kR(n) = 5.009).

During the in-control period, approximately 82% of the two stage procedure does 

not go to the second stage (that is, Pr[|Z|< w = 1.335|Z ≈ N(0,1)] ≈ 0.82); consequently, 

most of the time the user will not have to measure the diameter of any shaft. As the 

process is very stable (remains in control most of the time) the occurrence of X or R 

values outside the control limits is rare. The activity of measuring three shafts at each 

hour plus computation of X and R values may be considered tedious. The DS procedure 

provides some relief once the average length of the interval between no-interrupted 

samplings (when measurements are effectively required) is longer than 5 hours and half 

(1/0.18 sampling intervals of one hour). Hence, most of the time, measurements will 

be performed once or twice per day (considering 8 hours of labor). One can raise the 

question that it is more monotonous to deal with the non-central chi-square statistic 

than with X and R statistics, however, with a programmable calculator, the required 

number of keystrokes to obtain the T values or the X values is just the same. In summary, 

the DS χ2 chart is not only more sensitive than the joint X and R charts, but operationally 

simpler as well.

Table 8 – ARL for the EWMA and CUSUM chart combinations and for the DS χ2 chart.

n = n = 4 EWMA
X
 and EWMA

X

2

λ = 0.1000
h

EX
=2.940 

h
EX

2
  
=3.412

CUSUM
X
 and 

CUSUM
X

2

ζμ = 0.8 ζσ = 1.35

h
CX

 = 6.772

h
CX

2
 
= 19.143 

DS χ2 chart

n0 = 16 d = 0.40

w = 1.3180

k = 41.0710

δ γ
0 1.00 370.4 370.4 370.4

0.25 1.00 33.1 33.1 107.4

0.50 1.00 10.6 10.4 21.4

1.00 1.00 4.3 4.2 3.2

1.50 1.00 2.6 2.6 1.7

2.00 1.00 1.7 1.8 1.3

3.00 1.00 1.1 1.1 1.1

0 1.25 16.1 16.2 16.2

0 1.50 5.9 5.9 4.5

0 2.00 2.6 2.6 2.1

0 2.50 1.8 1.8 1.7

0 3.00 1.4 1.4 1.4
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Conclusions
In this paper we have shown that it is possible to design one chart, which can monitor 

both the process mean and variance. The DS χ2 control chart is of particular interest when 
the quality characteristic can be evaluated either by attribute or variable. As it is much 
easier to deal with attributes than with variables the proposed chart is a valuable tool. A 
classical example consists in monitoring the diameter of shafts. During the fi rst stage of 
the sampling, a gauge is used to decide if the whole sample must be inspected by variable 
(for instance, using a micrometer) or if the sampling must be interrupted. This two-stage 
procedure has two advantages. The fi rst advantage is the reduced number of times the 
user will need to perform measurements, and the second is the gain in speed with which 
process disturbances will be detected. The DS χ2 chart was conceived to be a practical tool 
for surveillance of processes subject to small to moderate disturbances. Moreover, when 
the process is stable, and the joint X and R charts are in use, the monitoring becomes 
monotonous because an X or a R values rarely falls outside the control limits. The natural 
consequence is that the user pays less and less attention to the steps required to obtain 
the X and R value. But in some cases, this lack of attention can result in serious mistakes. 
When the DS χ2 chart is in use, most of the samplings are interrupted, consequently, 
most of the time the user will be working with attributes. Our experience shows that the 
inspection of one item by attribute is much less monotonous than measuring three, four 
or fi ve items at each sampling.
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Appendix: Computation of the Risk α and the Power of the Control Chart 1-β.
The statistic T is given by:
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where:  Z n X
0

0

0 0

cv
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=
- - ~N (0,1) and Z X
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cv
n dv

=
- -  ~N (0,1). Therefore, 

during the out-of-control period, the fi rst term on the right side of Equation (A1) follows 
a chi-square distribution with m-2 degrees of freedom; the second term follows a non-
central chi-square distribution with 1 degree of freedom and non-centrality parameter 
λ = n0[(δ + ξ)/γ]2. Consequently, the sum of these fi rst and second terms follows a chi-
square distribution with n0 degrees of freedom and non-centrality parameter λ = n0[(δ + 
ξ)/γ]2. To obtain α and 1-β, we consider the Equation (3)
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Then, using Equation A1, we have:
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The Equation A2 gives 1-β. Making δ = 0 and γ = 1, the Equation A2 gives the false alarm 
risk α and then, it can be used to determine the parameter k.




