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Abstract 
Statistical quality control is used to detect changes in the parameters values of the 

process which usually are estimated under the assumption of independence of the 
sampling units with respect to the quality characteristic. However, this is questionable 
for many processes. The main objective of this paper is to present estimators for the 
variance of autocorrelated processes by using Geostatistics methodology. With this new 
procedure the usual Shewhart’s control charts still can be used to monitor the quality of 
the process. A Monte Carlo simulation study showed that the proposed estimators have 
good performance. 
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Introduction 
The quality of a process is usually monitored by control charts. Basically, they are a 

representation of the quality characteristic measured in a sample or in several samples of 
the process. These charts define an area where the values of the quality characteristic (X), 
or its average, should stay for the process to be considered under control. For continuous 
inspection the chart for average contains a central line (CL) that represents the average 
value of the quality characteristic and two horizontal lines called lower and upper control 
limits (LCL; UCL) calculated under the assumption that X has a normal distribution. 
Sample points outside the limits are an indication that the process is “out of control” 
(Montgomery, 2001). As a consequence, there is always a probability of rejecting the 
“under control condition” of the process erroneously, which is defined as “false alarm”. 
This is the case where the sample points, or averages, fall outside the control limits due to 
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the randomness of the normal distribution and not due the fact that some modification of 
the process parameters had occurred. Under the normality assumption the control limits 
for the average of the process are given by the following equations:

UCL = µ + k ; CL = µ; LCL = µ – k  (1)

where  µ and σ are the average and the standard deviation of X, respectively and k is the 
distance of the control limits to the central line expressed in units of standard deviation. 

 In practice the values of µ and σ are estimated from samples of the process, when it is 
just under the effect of "common" or "random" causes. Let X

1
, X

2
, ..., X

n
 be the observed 

values of a random sample of the process. Then the parameter µ is estimated by the sample 
mean X and the parameter σ is estimated by the standard deviation (s) or the moving 
sample range (σ̂

AM
) defined respectively as

 where  (2) 

^σ
AM

 = , where  and AM
i
 = |X

i
 – X

i – 1
| (3)

The variance of the process (σ2) is estimated by the square of the estimators (2) and 
(3), respectively. 

These classical estimation procedures are based on the assumption of independence 
among the sample units of the process with respect to the quality characteristic X being 
measured. As mentioned in Alwan and Roberts (1995) this assumption is very questionable 
especially for chemical processes (Zhang, 1998). With the advances of the technology, 
processes can be sampled at higher rates which often leads to autocorrelated data. When 
the estimators (2) or (3) are used to estimate the standard deviaton σ of an autocorrelated 
process then the chance of "false alarms" or not detecting the "out of control" condition 
may increase because the calculated control limits will be shorter or wider than the true 
limits of the process. According to Zhang (1998) and Box and Luceno (1997) positive 
correlation occurs more frequently in practical situations. 

A decrease in the correlation effect can be achieved by increasing sampling units 
interval. However, this alternative can increase the time needed to detect that the 
process is "out of control" and for some continuous processes of production it can not 
be implemented. Corrections of control limits when the correlation is intrinsically part 
of the process are being proposed in the literature by several authors using time series 
models (Alwan and Roberts, 1989; Runger and Willemain, 1995). One of these alternatives 
is the identification and adjustment of the ARIMA model (Box and Jenkins, 1976) for the 
series of the process observations. After the adjustment, the residuals of the model are 
obtained and Shewhart’s control charts are constructed to the series of residuals, which 
by assumption should be independent and identically distributed according to a normal 
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distribution. The possible changes that could happen in the average of the process would 
be reflected in the behavior of the residuals (Box and Luceno, 1997). Although very 
interesting, this alternative demands the right identification of the ARIMA model and the 
calculation of the residual for each new collected sample. Another alternative is to monitor 
the process by using the EWMA (Exponentially Weighted Moving Average) charts proposed 
iniatially by Roberts (1959) and discussed by Montgomery and Mastrangelo (1991), 
Hunter (1998, 1986) among others. Basically the statistical EWMA model is defined as 

Z
t
 = l X

t
 + (1 – l) Z

t –1
 (4)

where 0 < l < 1 is a constant which needs to be determined by the user and X
t
 is the value 

of the quality characteristic X observed for the sample t, t = 1,2,…,n. By using the model 
(4) the series of the one step forecasts errors is obtained and Shewhart’s control charts are 
then applied to the series of errors which theoretically should be uncorrelated. The choice 
of the constant l in (4) is discussed in Crowder (1989), Lucas and Saccucci (1990), Box 
and Luceno (1997) among others. Basically, it is chosen to minimize the sum of squares 
of the one step forecasts prediction errors. Hunter (1998) claimed that the EWMA control 
chart is simpler to implement and can be an efficient tool to be used in companies daily 
routine. Another approach proposed by Krieger, Champ and Alwan (1992) and Alwan and 
Alwan (1994) is to use multivariate control such as Hotelling’s T2 chart or multivariate 
CUSUM chart to treat observations of an autocorrelated univariate process. This is done by 
forming a multivariate vector of a moving window of observations from the process. In this 
approach it is necessary to choose the time delay between samples in such way that the 
constructed vectors are almost uncorrelated. Apley and Tsung (2002) modified this idea 
allowing correlation between samples.

 The main purpose of this paper is to introduce an automatic and simpler form to monitor 
the process in the presence of correlation. The alternative we will propose does not depend 
upon the identification and adjustment of ARIMA models as well as the calculation of one 
step prediction errors. The idea is to use Geostatistics methodology (Cressie, 1993) to 
estimate the variance and the standard deviation of the process. The quality of the process 
is then monitored by the usual Shewhart’s charts applied to original characteristic X of 
interest by replacing the classical standard deviation estimator in the Shewhart’ control 
charts for a geostatistical estimator of σ. The correction of the charts due to presence of 
the correlation is automatically incorporated in the control limits UCL and LCL. The results 
of a simulation study comparing the geostatistical with the classical estimators will be 
presented.

Discussing the Effects of the Correlation: ARIMA Models 
In the context of the ARIMA models it is interesting to observe that the correlation 

effect in the estimator s2 is more accentuated in situations where the observations are 
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generated by an auto regressive process (AR) where s2 is the square of s in (2). To see this 
consider the AR(1) and MA(1) models defined as

X
t
 = f X

t – 1
 + a

t
 + δ (5)

X
t
 = a

t
 – q a

t – 1
 + µ (6)

where |f| < 1, |q| < 1, δ and µ are constants and a
t
 ~ N(0, σ2

a
) is a white noise series. In 

the AR(1) and MA(1) models the first order autocorrelation is given by f = r
1
 and  

r
1
 = , respectively.

Zhang (1998) had shown that the expectation of the estimator s2 for an autocorrelated 
process is given by

 (7)

where r
h
 = Corr (X

i
, X

i+h
). As we can see from (7) if r

h
 > 0, ∀h, then E[s2] will be smaller 

than the true value s2. If r
h
 < 0, ∀h, then E[s2] will be larger than σ2. For processes with a 

mixture of positive and negative correlation E[s2] could be smalller or larger than the true 
value of σ2 and for large sample sizes (7) converges to σ2. For the AR(1) and MA(1) the 
expression (7) reduces respectively to:

 (8)

 (9)

Tables 1 and 2 show the values of C(n, f) and C(n, q) for samples of sizes n = 25, 100, 
f ∈ [ – 0.9, 0.9] and q ∈ [ – 0.9, 0.9]. It can be seen that for AR(1) the bias of s2 is higher 
for n = 25 and positive high correlation. For MA(1) model the bias is negligible for both 
sample sizes and for all values of q. 

Geostatistics Methodology
The Geostatistics methodology was initially formulated with the purpose to analyse 

geological data (Matheron, 1963). Nowdays, it has been used in many other fields. Several 
examples appear in the study of pluviometric precipitation or atmospheric data (Ord and 
Rees, 1979; Thiebaux and Pedder, 1987; Kitanidis,1997), or in study of ground water-flow 
(Cressie, 1993; Yeh et al.,1995). Geostatistics has also been applied for variables that are 
not of physical-chemistry nature such as rates of infantile mortality and abundance of 
species (Cressie, 1993). In quality control, applications of Geostatistics can be found in 
mining industry and in sampling of materials of continuous flow (Gy, 1998, 1982). Some 
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Table 1 – Values of C(n, f) - AR(1).

f n = 25 n = 100
 0.90 0.53 0.84
 0.80 0.73 0.92
 0.70 0.83 0.95
 0.60 0.89 0.97
 0.50 0.92 0.98
 0.40 0.95 0.99
 0.30 0.97 0.99
 0.20 0.98 1.00
 0.10 0.99 1.00
 0.00 1.00 1.00

- 0.10 1.01 1.00
- 0.20 1.01 1.00
- 0.30 1.02 1.00
- 0.40 1.02 1.01
- 0.50 1.03 1.01
- 0.60 1.03 1.01
- 0.70 1.03 1.01
- 0.80 1.04 1.01
- 0.90 1.04 1.01

Table 2 – Values of C(n, f) - MA(1).
q r

1
n = 25 n = 100

 0.90 - 0.50 1.04 1.01
 0.80 - 0.49 1.04 1.01
 0.70 - 0.47 1.04 1.01
 0.60 - 0.44 1.04 1.01
 0.50 - 0.40 1.03 1.01
 0.40 - 0.34 1.03 1.01
 0.30 - 0.28 1.02 1.01
 0.20 - 0.19 1.02 1.00
 0.10 - 0.10 1.01 1.00
 0.00  0.00 1.00 1.00

- 0.10  0.10 0.99 1.00
- 0.20  0.19 0.98 1.00
- 0.30  0.28 0.98 0.99
- 0.40  0.34 0.97 0.99
- 0.50  0.40 0.97 0.99
- 0.60  0.44 0.96 0.99
- 0.70  0.47 0.96 0.99
- 0.80  0.49 0.96 0.99
- 0.90  0.50 0.96 0.99
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general references in Geostatistics are Cressie (1993), Journell and Huijbregts (1997), 

Chilès and Delfiner (1999) and Houlding (2000).

Briefly speaking, suppose we have a random sample of a random variable X collected in 

many different locations from a certain area. In this case, statistical models are build with 

the main objective to predict the value of X for locations not in the original sample. These 

models incorporate the information of the existing relationship among the sample values 

of X for different locations through a function called semivariogram (or variogram) which 

plays an important role in the spatial prediction procedure called Kriging (Cressie, 1993). 

In the Kriging procedure the value of X for a new location with coordinates s
0 

for example, 

is predicted based upon the values of X in a neighborhood of s
0
. Although Geostatistics can 

be used for locations in ℜd space most of the applications are related to ℜ2. Next we will 

introduce the Geostatistics definitions in ℜ space.

Geostatistics in the ℜ Domain: Main Concepts

The sequence of observed values of the quality characteristic X can be treated as 

a trajectory of a stochastic process {X (t), t ∈ ℜ}.The variability of the process can be 

expressed in terms of the theoretical semivariogram of the process. Two assumptions 

are necessary: intrinsically stationarity and the isotropy. Shortly, these assumptions are 

described as follows:

A. Intrinsically Stationarity: The stochastic process {X (t), t ∈ ℜ} is such that:

(i) E [X (t)] = µ, ∀ t ∈ ℜ;

(ii) Var [X (t
l
) – X (t

k
)] = 2 γ (||t

l
 – t

k
||), ∀ t

l
 ≠ t

k
, ∈ ℜ,

which means that the process has constant average in ℜ, and for all t
l
,t

k
 ∈ ℜ, t

l
 ≠ t

k
, 

the variance of the difference [X (t
l
) – X (t

k
)] is a function only of the difference ||t

l
 – t

k
|| 

depending on its magnitude and direction. The funcions 2γ (•) and γ (•) are called variogram 

and semivariogram of the process, respectively.

B. Isotropy: If the variogram 2γ (•) is a function only of the distance among the sample 

units then the process is said to be isotropic.

In the case of industrial processes, condition i) is equivalent to say that the process is 

“under control” in relation to the average and condition ii) indicates that the variability 

of the difference between any two observations of the process is just a function of the 

distance between them. The isotropy means that the future and the past of the process 

are described by the same variogram function. In practice, the intrinsically stationarity 

and isotropy are reasonable assumptions for the industrial processes when they are in the 

“under control” condition. The ℜ space covers situations where samples were collected 

on time domain as well situations where samples were collected in some specific order 

not necessarily time. Therefore, each sample has its own “reference location” in the space 

and Geostatistics can be applied to analyse the data. Theoretically, it is expected that the 

correlation between any two sample units of the process decreases to zero as the distance 

between them increases. Therefore, after a certain point c the natural variability is the only 
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source affecting the process. Some common semivariograms models are: spherical, linear, 
gaussian, exponential and wave (Cressie, 1993). In practice the theoretical semivariogram 
is estimated by using a sample of the process {X(t), t ∈ ℜ}.

At this point it is interesting to notice that for intrinsically stationarity and isotropic 
processes the semivariogram γ (•) can be expressed as

γ(h) = 1/2{Var[X(t + h) – X(t)]} = 1/2{Var[X(t + h)] + Var[X(t)]} –  (10)

Cov[X(t), X(t + h)] = σ2 – σ2 Corr[X(t), X(t + h)] = σ2(1 – r
h
), ∀ h

where r
h
 is the correlation between X

i 
and X

j
, |i – j| = h, i ≠ j.When the correlation is 

equal to zero the semivariogram of order h is equal to the natural variance σ2 of the process. 
By the Eq. (10) it is clear that in order to estimate the variance σ2 it will be enough to have 
estimators of the semivariogram γ (•) and the correlation of order h, r

h
. Therefore, it is 

possible to create many alternative estimators for the variance σ2 that automatically will 
take into account the correlation of the process. There are many semivariogram estimators 
for γ (h), called experimental semivariograms (Cressie, 1993) but Matheron’s (1963) classic 
estimator is the most well known. Given a sample of n observations of the process, denoted 
by X

1
, X

2
, ..., X

n
, Matheron’s estimator of γ (h) is defined as 

^γ(h)= , ∀ h ∈ T (11)

where X
i
 is the value of the quality characteristic X for the sample unit i, i = 1, 2,..., 

n, T = {1, 2,..., n -1}, (n – h) is the number of pairs (X
i
, X

j
) such that |i – j| = h, i ≠ j. The 

autocorrelation function of order h, r
h
, is estimated by 

  (12)

where  is the sample mean. The functions (γ (h), r
h
) are estimated under 

the assumption that the process is intrinsically stationary and isotropic which is the same 
as saying that the process is “under control”. In the next section we present the new 
estimators for σ2 that will be discussed in this paper.

New Estimators for the Process Variability: Geostatistics Approach
In Mingoti (2000) and Neves (2001) several estimators were proposed to estimate 

the variance σ2 of autocorrelated processes based on Geostatistics methodology. In this 
paper we will present a comparison of the geoestatistical estimators with the classical 
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estimators (2) and (3). They were constructed considering the relation (10) of section 3. 
All geostatistical estimators are biased but the bias converges to zero for large samples. In 
all cases an estimate of the standard deviation is obtained by taking the square root of the 
estimated variance.

The estimator σ̂2
1
 defined as

^σ2
1
 =  (13)

takes into account only the semivariogram and autocorrelation of order 1 and it is very 
simple to calculate. The estimator σ̂2

2
 defined as

^σ2
2
 =  (14)

takes into account the three first semivariogram and autocorrelation values. It is an option 
for process which have significant correlations of order higher than 1. The estimator ^σ2

3
 

introduced by Mingoti and Fidelis (2001) is the average of the M semivariogram values, where 
M is a constant in the set {1,2,...,(n – 1)}. In practice M should be chosen in the neigboorhood 
of [n/2], where [x] denotes the larger integer number less or equal to x, and such that the 
number of pairs (X

i
, X

j
) used to estimate γ (h) is higher ou equal to 30. This is the region where 

the semivariogram is estimated with better precision (Journel and Huijbregts, 1997).

^σ2
3
 =  (15)

The estimator σ̂2
4
 is an extension of the estimator σ̂2

3
 and the correction term in the 

denominator has the purpose to decrease the bias of the estimator σ̂2
3
.

^σ2
4
 =  (16)

Finally, the estimator σ̂2
5
 is a modification of σ̂2

4
 where M is defined as in σ̂2

3
. The 

purpose of using more than just 3 semivariogram values to estimate σ2 is to increase the 
precision.

^σ2
5
 =  (17) 

The nice thing about the geostatistical estimators defined in this section is that there 
is no need to recognize and adjust a statistical model to the sample series of the process 
or to the experimental process variogram something that would be necessary if one would 
decide to use the “best linear unbiased estimator” obtained by using Kriging technique. 
Usually in ℜ space the experimental variogram takes to a wave form and the estimation of 
its parameters is not very simple (see Mingoti and Neves, 1999 for details). 
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The geostatistical estimators can also be used in situations where the process is 
monitored by using averages of rational groups. If X

1 
, X

2
, ..., X

m
 represent the average values 

of m sample groups then formulas (11) and (12) should be applied to the X
k
 values, k = 1, 2, 

…, m, to estimate the semivariogram and correlation of order h of the theoretical stochastic 
process which is generating the X

k
 average values. The new formulas are defined as

^γ (h) = , ∀ h ∈ T* (18)

n

1i

2
i

hii
hm

1i
h

XX

XXXX
ˆ  (19)

where 
m

1i
iX

m
1X  is the global mean, T* = {1, 2, ..., m – 1}, and (m – h) is the 

number of pairs (X
i
, X

j
) such that |i – j| = h, i ≠ j. The Shewhart’s control limits for the 

average of the process are then given by

UCL = X + k ^σ
i
; CL = X; LCL = X – k ^σ

i
 (20)

where σ̂
i
, is any geostatistical estimator presented in this section calculated with the 

semivariogram and correlation estimates given by Eqs. (18) and (19), i = 1, 2, 3, 4, 5. 

Simulation Results
In this section we present the results of a Monte Carlo simulation study performed to 

evaluate the geostatistical estimators presented in section 4 for the standard deviation of 
the process. They were also compared to the classical estimator s and the moving sample 
range σ̂

AM
 defined in section 1. Samples with sizes n = 25, 50 and 100 were generated from 

an AR(1) with parameter f ∈ [– 0.9, 0.9] and from an ARMA(1,1) with the parameters (f, q) 
chosen such that r

1
 ∈ [– 0.95, 0.95]. The region of simulation contains models with long 

and short, positive and negative, correlation structure. As an illustration, for the AR(1) 
with f = 0.9 the autocorrelation for h = 7 is equal to 0.478 while for the AR(1) with f = 0.7 
the autocorrelation for h = 3 is only 0.34. The choice of AR(1) and ARMA(1,1) was due to 
the fact that those are the more commom models for autocorrelated processes according 
to the literature (see Box and Luceno, 1997; Zhang, 1998). All generated processes had 
the same fixed mean. The white noise was generated from a normal distribution with 
zero mean and standard deviation σ

a
 ranging from 2 to 7. The constant M = [n / 2] was 

used for the geostatistical estimators when needed. A total of r = 100 samples were 
generated for each case and the Mean Error (ME), the Mean Absolute Error (MAE) and the 
Mean Square Error (MSE), were calculated for all the estimators. The average results for 
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the AR(1) and ARMA (1,1) considering all simulated cases, are shown in Tables 3 and 4 

as a function of the true correlation r
1
. The respective values of (f, q) are also shown in 

the Table 4. Table 5 presents the average results as a function of the white noise standard 

deviation σ
a
. From Tables 3 and 4 it can be seen that in the presence of correlation the 

geostatistical estimators had better or similar performance than the classical estimators 

s and  σ̂
AM

. Among the geostatistical estimators in general, for high negative correlation 

the estimator  σ̂
5
 had a better performance; for intermediate negative correlation  σ̂

1
 and 

σ̂
2
 had smaller error values (ME, MAE, MSE) and for high positive correlation the estimators 

σ̂
1
 and σ̂

2
 had a better performance. When the correlation is small the average errors of all 

the estimators are more similar. For high positive correlation the estimator σ̂
3
 presented 

smaller errors than the classical estimators. Considering that the estimator σ̂
3
 does not 

have any correcting factor for bias this is an interesting result. In general the estimator σ̂
4
 

presented larger errors than the estimator s but the difference was not very accentuated. 

In all cases the moving sample range estimator σ̂
AM

 had a very bad performance with larger 

error values especially the MSE. From Table 5 it can be seen that for all the estimators the 

error values increase as σ
a
 increases. The increase rate is much higher for the ARMA than the 

AR process. The geostatistical estimator ̂σ
5
 had superior performance for the ARMA process 

and a good performance for the AR. Table 6 presents the average results as a function of 

the sample size n. As expected for all the estimators the errors decrease as n increases. In 

general the errors (ME, MAE, MSE) are larger for ARMA than for AR process. The MSE values 

for the σ̂
AM

 are intolerable for small and larger sample sizes. By considering the average 

results ME, MAE, MSE for all cases presented in Tables 3 and 4 for AR(1) and ARMA(1,1) we 

can see that the classical standard sample deviation had smaller values only in 2 cases for 

AR(1) and in 4 cases for ARMA(1,1) compared to the geostatistical estimators.

Example of Application
Table 7 presents the observed values of waiting time in line (in minutes) for 40 customers 

of a laboratory. The autocorrelation and semivariogram estimates for h = 1, 2, …, 20, are 

presented in Table 8. Table 9 shows the obtained estimates for the standard deviation σ 

using all 7 estimators discussed in this paper. As an example, Shewhart’s control charts 

for the average waiting time using the sample standard deviation s and the geostatistical 

estimator σ̂
1
 are presented in Figure 1. As one can see the control limits calculated by 

using the estimator σ̂
1
 are shorter than the limits calculated using the sample standard 

deviation. The moving range estimate was the smallest value and completelly different 

from all the others 6 estimators (see Table 9).
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Table 3 – Average results for the geostatistical and classical estimators 
of the standard deviation of the process - AR(1).

|r
1
| r

1
 > 0 r

1
 < 0

σ̂
i

 ME  MAE  MSE  ME  MAE  MSE
1 - 0.4243 1.0335 1.9583 0.5342 1.1923 3.0837
2 - 0.3809  1.0602 2.0534 0.5670 1.1920 3.0572
3 - 0.0031 1.2224 2.8055 0.6467 1.2462 3.2508

0.90 4 0.4943 1.2181 2.9182 0.5268 1.1978 2.9763
5 0.2564 1.1317 2.4271 0.2600 1.1031 2.3821
6 - 7.2270 7.2270 59.7367 5.3278 5.3344 40.3307
7 0.4480 1.2065 2.8856 0.5719 1.2141 3.2336
1 - 0.2413 0.7720 1.1740 0.2077 0.8351 1.4732
2 - 0.2185 0.7871 1.2068 0.2201 0.8325 1.4526
3 0.0899 0.9275 1.6343 0.2881 0.8836 1.6062

0.85 4 0.3130 0.8935 1.5355 0.1893 0.8570 1.4949
5 0.1798 0.8500 1.3690 0.0549 0.8345 1.3871
6 - 5.2959 5.2959 32.2813 3.7714 3.7858 19.8403
7 0.2457 0.8516 1.4333 0.2415 0.8503 1.5427
1 - 0.2010 0.6825 0.8956 0.0958 0.6773 0.8712
2 - 0.1619 0.6797 0.9050 0.0960 0.6727 0.8605
3 0.0703 0.7961 1.2115 0.1511 0.7020 0.9484

0.80 4 0.1812 0.7422 1.0662 0.0646 0.6847 0.8909
5 0.0982 0.7189 0.9950 - 0.0219 0.6808 0.8742
6 - 4.2090 4.2090 20.4759 2.9620 2.9677 12.0537
7 0.2149 0.9275 1.5323 0.2269 0.9271 1.5205
1 - 0.1799 0.6220 0.7267 0.0318 0.5992 0.7082
2 - 0.1431 0.6285 0.7530 0.0268 0.5989 0.7045
3 0.0581 0.6992 0.9559 0.0847 0.6213 0.7661

0.75 4 0.1092 0.6598 0.8585 0.0075 0.6093 0.7355
5 0.0480 0.6456 0.8118 - 0.0530 0.6069 0.7315
6 - 3.4686 3.4686 13.9468 2.4578 2.4793 8.5000
7 0.0695 0.6277 0.7727 0.0649 0.6064 0.7284
1 - 0.1604 0.5613 0.6068 0.0069 0.5528 0.5689
2 - 0.1314 0.5676 0.6139 - 0.0022 0.5513 0.5638
3 0.0195 0.6216 0.7572 0.0585 0.5734 0.6147

0.70 4 0.0521 0.5877 0.6726 - 0.0127 0.5656 0.5978
5 0.0066 0.5803 0.6491 - 0.0584 0.5659 0.5989
6 - 2.9176 2.9176 9.9615 2.0835 2.1026 6.1243
7 0.0444 0.5645 0.6294 0.0412 0.5590 0.5847
1 - 0.1536 0.4936 0.4826 - 0.0161 0.4821 0.4682
2 - 0.1241 0.4918 0.4807 - 0.0290 0.4831 0.4719
3 - 0.0074 0.5239 0.5592 0.0282 0.5026 0.5105

0.60 4 - 0.0109 0.4990 0.4994 - 0.0332 0.4969 0.4953
5 - 0.0399 0.4972 0.4931 - 0.0631 0.4984 0.4972
6 - 2.1700 2.1700 5.5370 1.5931 1.6205 3.8033
7 - 0.0100 0.4831 0.4669 0.0195 0.4871 0.4766
1 - 0.1540 0.4533 0.3955 - 0.0533 0.4318 0.3618
2 - 0.1301 0.4529 0.3933 - 0.0670 0.4340 0.3640
3 - 0.0416 0.4660 0.4170 - 0.0141 0.4480 0.3868

0.50 4 - 0.0605 0.4539 0.3929 - 0.0695 0.4461 0.3812
5 - 0.0825 0.4540 0.3922 - 0.0920 0.4479 0.3831
6 - 1.6044 1.6047  3.1773 1.1886 1.2228 2.2513
7 0.0069 0.4857 0.4554 0.0214 0.4877 0.4586
1 - 0.0823 0.4021 0.3111 - 0.0563 0.4130 0.3420
2 - 0.0660 0.4011 0.3073 - 0.0651 0.4137 0.3425
3 - 0.0024 0.4054 0.3142 - 0.0143 0.4222 0.3527

0.30 4 - 0.0343 0.4024 0.3086 - 0.0613 0.4195 0.3510
5 - 0.0490 0.4027 0.3081 - 0.0757 0.4199 0.3526
6 - 0.8069  0.8303 0.9973 0.6464 0.7580 0.9911
7 - 0.0024 0.3974 0.3032 - 0.0141 0.4156 0.3456

 (*) σ̂
6
 = σ̂

AM
 is the classical moving range estimator; 

 σ̂
7
 = s is the classical standard sample deviation.
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Table 5 – Average results for the geostatistical and classical estimators of the standard deviation of 
the process as a function of σ

a
. 

AR ARMA
σ

a
^σ

i
ME MAE MSE ME MAE MSE

2 1 - 0.0237 0.2832 0.1520 0.0224 0.5329 0.7665
2 - 0.0177 0.2845 0.1540 0.0553 0.5325 0.7763
3  0.0361 0.3054 0.1774 0.1428 0.5638 0.8733
4  0.0429 0.2946 0.1657 0.1967 0.5583 0.8735
5  0.0076 0.2876 0.1530 0.1053 0.5245 0.7253
6 - 0.2145 1.3358 2.5749 - 0.3144 2.3895 10.5233
7  0.0509 0.2868 0.1636 0.1935 0.5526 0.8580

3 1 - 0.0229 0.4152 0.3316 0.0311 0.7627 1.4979
2 - 0.0112 0.4161 0.3346 0.0795 0.7647 1.5192
3 0.0690 0.4535 0.3983 0.2009 0.8142 1.7217
4 0.0795 0.4400 0.3763 0.2810 0.8119 1.7383
5 0.0264 0.4286 0.3424 0.1482 0.7591 1.4371
6 - 0.3150 1.9818 5.7008 - 0.5067 3.5429 22.9923
7 0.0909 0.4284 0.3640 0.2858 0.8046 1.7475

4 1 - 0.0356 0.5660 0.6506 0.0555 1.0526 3.0655
2 - 0.0221 0.5702 0.6629 0.1239 1.0576 3.1420
3 0.0912 0.6156 0.7784 0.2964 1.1361 3.6183
4 0.1086 0.5962 0.7352 0.4058 1.1232 3.5922
5 0.0372 0.5782 0.6633 0.2243 1.0511 2.9407
6 - 0.4496 2.6911 10.7485 - 0.5989 4.8039 43.1554
7 0.1251 0.5842 0.7263 0.4028 1.1021 3.5077

5 1 - 0.0667 0.7098 0.9581 0.0264 1.2580 4.1816
2 - 0.0538 0.7117 0.9606 0.1082 1.2630 4.2568
3  0.0796 0.7589 1.0925 0.3220 1.3619 4.9229
4  0.0964 0.7338 1.0247 0.4554 1.3399 4.8579
5  0.0079 0.7166 0.9442 0.2354 1.2588 4.0141
6 - 0.5139 3.3379  16.1486 - 0.8598 5.8936 63.5967
7  0.1210 0.7226 1.0271 0.4447 1.3055 4.7462

6 1 - 0.0905 0.8391 1.3514 0.0747 1.5422 6.1699
2 - 0.0665 0.8444 1.3676 0.1789 1.5454 6.2524
3 0.1058 0.9154 1.6141 0.4219 1.6432 7.0560
4 0.1230 0.8868 1.5326 0.5889 1.6352 7.1192
5 0.0170 0.8667 1.4040 0.3151 1.5236 5.8177
6 - 0.6564 3.9639  22.7816 - 0.9438 7.1322 92.6429
7 0.1372 0.8641 1.4957 0.5983 1.6235 7.1873

7 1 - 0.0779 1.0132 1.9667 0.0041 1.8041 8.7616
2 - 0.0573 1.0157 1.9691 0.1235 1.8092 8.8877
3 0.1479 1.0991 2.3484 0.4312 1.9319 10.0389
4 0.1704 1.0734 2.2310 0.6127 1.9265 10.1370
5 0.0420 1.0364 1.9878 0.2977 1.8090 8.2329
6 - 0.7264 4.6872 32.0489 - 1.2109 8.2380 125.4821
7 0.1929 1.0529 2.2022 0.5953 1.8946 10.1568

 (*) ^σ
6
 = ^σ

AM
 is the classical moving range estimator; 

 ^σ
7 
= s is the classical standard sample deviation.
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Table 6 – Average results for the geostatistical and classical estimators of the standard  deviation of 
the process as a function of n (positive correlation).

 AR (1) ARMA (1,1)
n   σ̂

i
 ME  MAE  MSE  ME  MAE  MSE

25 1 - 0.1047 0.8810 1.6116 0.0624 1.4900 6.3739
2 - 0.0777 0.8863 1.6219  0.1732 1.5023 6.5316
3  0.1038 0.9381 1.8308  0.3697 1.5676 7.0518
4  0.1352 0.9040 1.7246  0.5916 1.5669 7.1198
5  0.0002 0.8722 1.5255  0.2512 1.4274 5.4412
6 - 0.3946 3.1806  17.5410 - 0.3650 5.7222  70.7773
7  0.1961 0.9107 1.8032  0.6759 1.5886 7.4756

50 1 - 0.0389 0.6033 0.7235 0.0469 1.1244 3.7361
2 - 0.0277 0.6058 0.7311 0.1222 1.1281 3.7905
3 0.1004 0.6628 0.9067 0.3509 1.2284 4.5496
4 0.1098 0.6456 0.8600 0.4490 1.2188 4.5964
5 0.0396 0.6289 0.7938 0.2705 1.1511 3.8849
6 - 0.4914 2.9513 14.3296 - 0.7816 5.2984  58.1726
7 0.1076 0.6223 0.7957 0.4090 1.1853 4.4118

100 1 - 0.0150 0.4290 0.3702 - 0.0022 0.8619 2.1116
2 - 0.0089 0.4292 0.3715 0.0393 0.8559 2.0950
3 0.0606 0.4731 0.4671 0.1870 0.9295 2.5142
4 0.0654 0.4629 0.4482 0.2296 0.9118 2.4430
5 0.0293 0.4560 0.4281 0.1413 0.8846 2.2578
6 - 0.5520 2.8670 13.1310 - 1.0707  4.9793  50.2466
7 0.0552 0.4365 0.3906 0.1753 0.8676 2.2144

(*) ^σ
6
 = ^σ

AM
 is the classical moving range estimator; 

^σ
7 
= s is the classical standard sample deviation.

Table 7 – Customers waiting time data.
Customer Waiting time Customer Waiting time

 1  5.60  21  10.44
 2  6.94  22  11.37
 3  7.85  23  10.52
 4  5.10  24  8.44
 5  6.40  25  10.93
 6  9.00  26  12.79
 7  7.70  27  11.38
 8  9.96  28  10.59
 9  8.82  29  9.12

 10  5.04  30  7.18
 11  7.25  31  5.84
 12  10.32  32  6.27
 13  10.16  33  8.99
 14  9.20  34  10.96
 15  9.70  35  11.18
 16  9.05  36  11.80
 17  9.27  37  10.61
 18  10.20  38  10.21
 19  11.96  39  7.67
 20  11.13  40  5.82



Brazilian Journal of Operations & Production Management
Volume 2, Number 1, 2005, pp. ��-5�

5�

Figure 1 – Shewhart’s control charts for the average of customers waiting time.
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Concluding Remarks
In this paper we presented new estimators for the variance and standard deviation of 

autocorrelated processes based upon the concepts of Geostatistics methodology. In the 
presence of correlation this estimation procedure is very appealing because it allows the 
user to keep monitoring the quality of the process by using the usual Shewhart’s control 
charts. It was shown that in general the geostatistical estimators  ^σ

1
 and  ^σ

2
 had better or 

similar performance than the classical standard sample deviation s in all simulated cases. 
In the cases where the classical standard sample deviation s presents better performance 
than the geostatistical estimators ^σ

3
, ^σ

4
, ^σ

5
, the difference in terms of average error values 

were not to large. For high negative correlation the estimator ^σ
5
 was the best and for all 

the other cases the estimators ^σ
1
 and ^σ

2
 had better performance. This paper also shows 

that the classical moving sample range estimator should not be used to estimate the 
standard deviation of autocorrelated processes. This fact was also pointed out by Mingoti 
and Neves (2003). 

Table 8 – Semivariogram and autocorrelation estimates waiting time - queuing system 
example.

 h  r̂h  γ̂h  h  r̂h  γ̂h
 1  0.6024 1.4279  11 4.4173 1.4279
 2  0.2152 3.0966  12 4.9501 3.0966
 3  0.1187 3.5818  13 4.6301 3.5818
 4 - 0.0861 4.3997  14 4.5139 4.3997
 5 - 0.1082 4.4114  15 4.6467 4.4114
 6  0.0909 3.4886  16 4.9387 3.4886
 7  0.1777 3.0692  17 5.5341 3.0692
 8  0.1958 3.0572  18 6.1187 3.0572
 9  0.1612 3.2162  19 5.3455 3.2162

 10  0.0388 3.5668  20 4.8959 3.5668

 

Table 9 – Estimates of the standard deviation  
waiting time example.
 Estimator  Estimate
Geostatistics 1  1.8950
Geostatistics 2  1.9819
Geostatistics 3  2.0409
Geostatistics 4  2.0433
Geostatistics 5  2.0206
Moving range  1.2513
Sample standard deviation  2.0783
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