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i f Abstract

The problem of selecting an optimal production policy for a make-to-stock process is
considered. This process is a particular type of flow-shop manufacturing system whose main
characteristic is that the inventory levels are strongly influenced by the fluctuation of
demand over the future periods of the planning horizon. In order to guarantee that the
demand will be met over such periods, an optimal balance policy, between production and
inventory levels, must be determined. As will be discussed ahead, such policy relates
smooth production levels to a safety stock rule. In this paper, the production strategy is
provided by solving a stochastic production planning problem with chance-constraints on
production and inventory variables. A modified stochastic dynamic programming algorithm
1s used as solution technique for this problem. Finally, a simple case study is proposed to
illustrate that such optimal sequential solution can be used to provide long-term plan as well
as to help managers to get insights about the use of the firm’s aggregated resources.
Keywords: Production planning, optimization, probability, dynamic programming, feedback

Introduction
The problem of selecting an optimal production policy for flow-shop manufacturing sys-

1 tems is the object of attention in this paper. These systems have as a main characteristic
their strong dependence on the fluctuation of demand. In a long-term planning horizon,
due to the uncertainty of the demand's behavior, the dynamics of flow-shop Systems can be
understood as a stochastic process. Under this uncertain environment, Mmanagers are
s induced to develop production planning policies that are able to anticipate future fluctua-
f | , tions of demand. This means that managers must find a tradeoff between the maximum
| customer satisfaction level and the minimum safety-stock level. Besides, another important

correlated managerial requirement is to minimize the idleness in the ;}{i}dﬁﬁﬁ@ﬁ process

capacity.
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A stochastic optimization model with constraints on decision variables is used to repre-
sent the class of the production planning problem discussed here. Once a stochastic
dynamic process is considered, such model can be classified as being an optimal stochastic
control problem with chance constraints on state and control variables (Brison and Ho,
1975). Due to the stochastic nature and high dimensionality found in this kind of problem,
a true optimal solution is almost impossible to be provided, excepting in very particular
cases as discussed in Silva Filho (2000). Looking for alternatives in the literature, it is possi-
ble to find different ways to overcome (or, at least, to reduce) such complexity by applying
a set of transformations to the original problem, objecting to simplify it (see a brief discus-
sion of these alternatives in section 3.1). These simplifications allow to eliminate, at least
partially, the stochastic nature as well as to reduce the dimension of the original problem
(Bertesekas, 1995). Statistics hypotheses associated with the randomness of demand as well
as the linearity of inventory equation are strategies often used to transform the stochastic
problem and, simultaneously, preserve its structural properties. For example, using first and
second moments the probabilistic constraints (i.e., the chance-constraints of the stochastic
problem) can be transformed into equivalent deterministic constraints (see section 4.1).
Finally, a particular advantage of using an equivalent problem is the possibility to apply any
appropriate technique of mathematical programming and/or optimal control theory, avail-
able in the literature (see Bensoussan et al. (1978) and Bertesekas (1995)).

Since the interest in this study is to investigate long-term planning, all decision vari-
ables of the problem are assumed to be found within an aggregated pattern. This means
that all similar products -~ as, for example, those ones sharing the same production line -
are considered to belong to a same group (or family) of products. This assumption is very
important to choose solution’s techniques for production planning because it reduces enor-
mously the dimension of the problem, allowing that well-structured approaches can be
applied. Within this context, a state-space optimal control problem can be formulated and,
as a result, closed-loop solution (ie., true optimal solution) by using the Stochastic
Dynamic Programming (SDP) algorithm can be provided. In practice, this algorithm can only
be applied directly to small dimension problems. This is, of course, the major drawback of
the SDP. However, in the literature, it is possible to find large-scale problems, being split
into smaller problems that can bhe easily solved by SDP in a parallel programming pattermn
(Bertesekas, 1995). It is worth clarifying that parallel programming algorithms will not be
object of discussion in this paper.

The sequential optimal solution, provided by SDP, can be used by managers to elaborate
a production plan to the company. This solution contains optimal level of aggregate
resources required to meet the demand over each period of the planning horizon. In the
managerial practice, the production plan is a very important strategy to the company. In
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fact, the plan is used as a target or goal to be reached by other decisions to be done in the
medium and short term planning. Another important advantage of this plan is that it can
be used by managers to get insight about the future use of the aggregated material
resources of the company.

This paper is an extended version of the paper presented in Silva Filho and Cezarino
(1999). The purpose of it is to adapt the traditional SDP algorithm to deal with a class of the
stochastic control problem with chance-constraints on decision variables. The modified SDP
is named here as Non-conventional SDP algorithm. From now, the acronym used to denote
this algorithm will be NSDP.

The paper is distributed as follows: section 2 discusses briefly basic concepts related to
the flow-shop nature of the production planning problem. In the section 3, the stochastic
production problem is formulated and the notation is introduced. Section 4 and 5 discuss
respectively the aspects of transforming the stochastic constraints into deterministic equiv-
alent constraints and the statement of the NSDP algorithm. Lastly, in the section 6, an illus-
trative example of application is presented. It is a simple example to illustrate important
characteristics about the use of the model.

The Production Planning Problem
The manufacture production process can be split into two distinct classes named as flow

shop or job shop processes. Table 1 summarizes some aspects related to the nature of these

processes.

Table | — Characteristic of the manufacturing process.

Process Nature Layout Strategy
Flow Shop Continuous Rigid: Make w stock
Dedicated Product emphasis
Intermitent
Jsb Shep Customer Flexible: Make w order
specification Process emphasis

It is possible to classify the flow shop process according to its nature as continuous,
repetitive and intermittent whose features are discussed in the literature, see for instance,
Fogarty et al. (1991). In this kind of environment, the great challenge is to deal with stock
policies. Since the flow shop process often uses the same sequence of machines (e.q. assem-
bly lines) to produce different products, it is very important to control both intermediate
and final inventory levels. In both cases, the objective is to quarantee customer satisfaction
which means a great managerial effort to provide: low cost, high quality and ready delivery.
Such objective is essential to preserve the organizational competitiveness within the cur-
rent globalized market place.
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The make-to-stock strategy puts enormous emphasis in the use of a set of managerial
decisions that increases the company's productivity, leading, as a consequence, to improve
the customer satisfaction level. Remember that the customer usually does not tolerate
delays in the products delivery. Thus, an important task performed by managers is to
develop strategies that are able to anticipate future fluctuation of demand. In fact, they
must develop a protective mechanism to meet unexpected demand over the future periods
of the planning horizon. For this purpose, it is very important to define a safety-stock rule
that, simultaneously, reduces the possibility of the stock out, and does not increase the
inventory costs significantly. In order to help managers deal with safety stock rules, a
sequential optimal stochastic optimization problem with constraints is formulated in this
paper. Since the inventory balance equation represents a dynamic nature of the production
process, strategies and techniques from optimal control theory can be applied to solve the
stochastic problem. Figure 1 illustrates features of the make-to-stock process and its rela-
tion to the stochastic control theory. Some of these features illustrated by figure 1 are: (a)
the managerial uncertainty about the demand fluctuation that forces managers to use sta-
tistic methods for forecasting future demand from the market; and (b) the feedback of cur-
rent inventory level that helps managers to adjust production rates to face the orders placed

by customers.

Delivery

Market

Demand
forecasting

Production y

Orders rates > Flow-shop Inventory level - gL;fFEft t
nventory + Safety
System Stock

Level
I f Adjusts }‘

Figure | — A make-to-stock environment.

—

Looking now from a hierarchical decision strateqgy, the sequential stochastic production
plarning problem is to be solved over a long-term planning horizon (e.g., from 6 months to
one year) (Hax and Candea, 1984). Under this scale of time, the production process is repre-
sented by an aggregate dynamic system, for example, as being a unique machine. The pro-
cess is strongly influenced by the aggregated fluctuation of demand that is a random
variable. As a resulf, both inventory and production variables are random variables. In the
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practice, these variables are subject to take values from sets formed by lower and upper
boundaries. However, the basic question is how to guarantee that such random variables do
not violate their physical spaces. In the literature, penalization schemes on the criterion are
often used (see Minoux, 1983). In this paper, a chance-constraints scheme will be used in
order to preserve them explicitly into the formulation (see discussion in section 4).

Note that this sequential stochastic control problem provides a production planning
policy to represent the optimal balance between inventory and production levels. As a con-
sequence, this balance maximizes the customer service level and minimizes the idleness
rate of the aggregated production process. As will be seen ahead, these qualitative indexes
can be established in advance, setting some probabilistic degrees associated to the inven-
tory and production chance-constraints to appropriate values defined by the manager. For
example, setting the probability of inventory chance-constraint equal to 0,95 means that
there are 95% of chances of satisfying customers orders with respect to the due-dates previ-
ously combined. Thus, this long-term decisions will help the manager to anticipate actions
related to the use of company’s resources. In parallel, forecasting models of demand can be
developed in order to describe its future behavior. During simulation running, this forecast-
ing can be used to analyze different production scenarios.

The Stochastic Model
For each period k of planning horizon T>1, the basic notation is given by:

I, denotes the current inventory level;

P, denotes the production rate;

Dy is the demand, an independent random variable, with mean [y, and variance V" ;

F(ly, P,) denotes the holding and production costs;

I, 1s the initial inventory.

The production-inventory economic balance is described as a linear process given by
Ljer = I+ P = Dy (1)

Since the sequence of demands {Dy, k=1, 2, ..., T} are, without lost of generality (Silva
Fitho, 1999), assumed to be independent Gaussian random variables, the balance equation
(1) must be understood as being a linear Gauss-Markov stochastic process (Pappoulis, 1991).
Assuming that the probability density function of demand is estimated for each period k,
and takes into account the linearity of (1), the probability distribution function of inven-
tory can be easily computed. Thus, this distribution function is determined by the sequen-
tial evaluation of the first and second statistic moments over the periods of time (i.e., the
mean and variance values for each period k) given respectively by the following linear equa-

fions:
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It is assumed that the production variable P, is derived from a closed-loop policy, i.e.,
like a feedback scheme is illustrated by figure 1. This means that, at each period k, the pro-
duction variable P, uses the available information about the inventory variable I,.. For gen-
eral purpose application, the relation between production and inventory variables can be
defined as a non-linear functional feedback structure 1 (.). However, in order to assure the
linearity and stochastic nature to the balance inventory-production system (1), a linear
feedback gain is considered and, in this way, the functional structure i (.) can be stated as

follows:
Pe=p(li) = =Gy - I (3)

where G, denotes the linear gain to be determined in the next section. It is worth men-
tioning that the linear structure given by (3) will be used to define the spaces of feasible
production and inventory variables.

As an immediate consequence of (3), the production variable Py is also a random vari-
able. Due to a linear dependence between these variables, the production variable is said to
be a Gaussian random variable, with mean and variance given, respectively, by P, and %
(Pappoulis, 1991).

With the objective of guaranteeing that both inventory and production random vari-
ables do not violate their physical lower and upper boundaries, probabilistic constraints are
considered in the formulation. These chance-constraints are expressed as follows:

Prob.{I, <l <li} > 20-1 (4)

Prob.{ P, < P¢ < Mﬁk} > 2Py -1 (5)

where (1, .1,) and (P, .P.) denote respectively the lower and upper physical capacity
limits of inventory and production. The parameters oy, and {3, are probabilistic degrees
defined a priori by the manager; they represent the customer service and capacity idleness
levels, respectively.

The advantage of the chance-constraints (4) and (5) in relation to the traditional
scheme of penalizing such constraints on the criterion is that this strategy allows to pre-
serve the constraints explicitly on the model. Besides, this strategy gives more flexibility to
use the model. In fact, managers can vary the probability degrees in order to investigate
different types of production scenarios. Thus, it helps managers to improve their knowledge

about how to use the production resources rationally.
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It is worth observing that whenever the inventory and production lower boundaries in
(3) and (4) are greater than zero, an important physical interpretation for the production
planning problem can be immediately stated. For example, (a) keeping the lower inventory
boundary I, > 0 means to get a protection against possible lost due to unexpected situa-
tions as, for instance, strikes, excessive demand, machines breakdown. Otherwise, if it is
considered that I = 0 means the possibility of backlogging is allowed to occur during the
planning; and (b) assuming a production lower boundary P, > 0 allows managers to study
different policies of production capacity as well as the work-force required to produce the
aggregated finished products.

The problem can be formulated as follows: given the initial inventory I, a sequential
optimal production policy {Py, P;, ..., Py} can be obtained by solving the following
sequential stochastic production planning problem:

(7
Min E4 ¥ Al P )+ Friin)
ko

6

£
e —

5.1

I =1 + P Dy

Prob.l, <l <Ii)22ay -1

Prob.(P, <Py <Py)z20: —1 (6)

where the criterion F(..-) is assumed to be general. It represents a basic structure of the

planning costs, based on expected inventory and production costs. Some characteristics as
convexity and Gaussian properties can help enormously to handle the mathematical expec-
tation operators (Silva Fitho, 1999)

As formulated, the problem (6) is a realistic model for describing a wide class of aggre-
gated production planning problems. In fact, the stochastic nature, the general functional
costs, and the constraints, associated with the main decision variables, are the main reasons
that lead to such realism. Moreover, the possibility of aggregating an enormous amount of
data, available for managerial purposes, allows reducing the dimension of problem signifi-
cantly. As a consequence, the complexity of the problem is reduced. It is worth mentioning
that within a hierarchical decision making scheme, the great part of the well-structured
models for planning like (6) are found in the long-term decision levels (i.e., in the strategic
level) because of the amount of aggregating available information (see Silva Filho and Ven-
tura, 1999).

Some approaches for solving the problem (6)
Stochastic nature and large dimension are difficulties to be overcome in order to solve

(6). Such difficulties impede that a true optimal solution (i.e. a closed-loop solution) can be
obtained. Thus sub-optimal solutions are often used in practice. These sub-optimal
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approaches are based on strategies that simplify the original stochastic model. Generally,
the approximate schemes fall under four different groups briefly described bellow:

a) Approximation of the functions of the original problem: non-linearity of the system
and non-convexity property of the cost can be substituted, respectively, by a linear
system and by a convex function, applying, for example, Taylor series approximation
(Bensoussan et al, 1978).

b) Discretization and Interpolations: strategies of discretization and interpolation can be
used together to reduce the spaces of decision variables and then improve the
computer implementation (Bensoussan et al, 1978).

¢} Particular structure for the control law: a linear rule, for example, can be used to relate
the control scheme to current states of the system (Silva Filho and Ventura, 1999).

d) Informational approximations: this approximation is related to the amount of
information utilized to determine the control law. This implies in reducing the
stochastic model into deterministic models with base on the certainty-equivalence
principle. There are many different approaches with this characteristic, for example:
Naive Feedback Controller and Open-loop Feedback Controller (Silva Fitho, 2000).

In the next section, the dynamic programming algorithm is discussed as a technique of
solving the problem (6). Some approximate schemes discussed above are used to preserve
the main characteristics of the original model. For examples: the linear gain (3) is used as a
particular structure to quarantee the feasibility space of production and inventory variables.
The constraints (4) and (5) are converted in equivalent deterministic constraints, preserving
the main statistic moments of the stochastic process described by (1).

The Stochastic Dynamic Programming - SDP
The certainty-equivalence principle (Bertesekas, 1995) can be used to develop a sub-

optimal strategy to the stochastic problem (6). Such principle states that all random vari-
ables of a stochastic problem can be changed by their respective mean values (i.e. their first
statistic moments) and, as a consequence, the stochastic problem is converted to an equiv-
alent deterministic problem that is often known as Mean problem. The Mean problem is for-
mulated by setting all random variables of the stochastic problem equal to their mean
values (i.e., fivst statistic moment). This means that the behavior of the demand Dy over the
periods will be exactly equal to its average behavior, i.e., {D, = D,, Vv 0 < k < T-1}. Unfor-
tunately, this kind of solution is not sufficiently reliable to be applied for the company. In
fact, this solution does not quarantee that fluctuation of future demand can be met, except
if the demand at each period occurs exactly in its expected mean value

Another way of determining a production policy to the stochastic problem (6) is to use
the dynamic stochastic programming algorithm (SDP). The direct application of the SDP for
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large-scale problems is totally prohibitive because of computational unfeasibility (Bellman,
1957). However, for particular applications where large-scale problems can be decomposed
in several small problems, the SDP appears as a good option. The aggregate production
planning problems related to make-to-stock environment - where finished products are
aggregated in different groups or families ~ can be included in these particular cases.

In sequel a non-conventional and more realistic approach for developing a production
planning policy to the aggregate problem (6) is discussed. Such approach is based on SDP
procedure and, thus, it preserves the stochastic features of the problem and maintain
explicitly the main statistic moments (i.e., the mean and variance) in both criterion and
constraints (4) and (5).

Non-Conventional Stochastic Dynamic Programming (NSDP) Algorithm
The basic idea is to try to guarantee that the solution provided by the SDP approach

will not be to violate the inventory and production boundaries (i.e. (4) and (5) constraints).
Thus, the first action to define a non-conventional SDP (NSDP) algorithm is to set an equiv-
alent, but deterministic, feasible subspace that reduces the risk associated with the possi-
bility of violation of the constraints (4) and (5). To be created, this subspace takes into
account all statistics about the random variable Dy and the linear gain G,. Next is discussed
briefly the three steps to derive this subspace.

(15 step) Transforming the chance-constraint (4) in an equivalent production constraint

_ [Prob.(I <li) 2 o
Frob{jkﬁiﬁ{l;);’?{x; —§ , e { : }v‘;§~
i {Prob.(l >1, )z 0. (7)

Using the system equation (1) and linear gain (3), it is possible to write the following
expression to inventory level:
Iy = [(Gx-1)/G]-Py - (D, + Spxopy) (8)

P

whereo;, = § vy is standard deviation of demand for each period k and 8py o« N(0,1)
denotes the residue of demand (i.e., a normal white noise variable). Handling (7) and (8)
follows respectively that:

& P <[Gi/(Ge ~ D]l + Do, -3 (o)) = Be (@)

Prob(li21,)2 ax <> Probldu, <|(G —1/Gy)- P Ty - Dy Jfou, J21-a

< P 2[Gi /(G ~—i}}‘!§; + Dy~ o, fi}{:m”} = Py (10)
By combining the above (9) and (10) inequalities, it will be created a feasible subspace
for the production variable, that is:
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P, e QX ; | ,ﬁPkﬂPa§k~0,i,..,,Twij (11)

(2‘”‘:5 step) Transforming the chance constraint (5) in an equivalent inventory constraints
Note that, the production variable is a linear function of inventory variable given by (3);
this implies that constraint (5) can be set equal to

(Prob(ly<-P, /Gy)>
Prob(-P, /Gy €1y <— P, /G )= 2By =1 & i rob.(le L G2 B

PI’Ob(ig 33**“33&5(\35()23; (12)

Using an analogous handling scheme applied in the 1°¢ step, follows that:
L (G- 1)/G) P~y + 00, @33 (Bo) = 1) (13)
2 (G -1/G) P, ~ (D00, 03 (Bo)) = 1] (14)

As a consequence, of combining inequalities (13) and (14), it will result a feasible sub-

space for the inventory variable, that is:

L € Qf = izi I <l <T5k=0,1,.,T—1]

(15)

Note that the spaces provided by (11) and (15) depend strongly on the values chosen
for o and P. Based on these values, it is possible to detect a priori unfeasible situations (i.e.,
empty spaces). For example, if, for vk and (o,B)e[1/2, 1), occurs that:

(G, =) - (1 1. )]
P 2@51}[((};1/((}2 )) (k MR)JC? Qé =07
-G,
1)
Ly >(f)5 i(ik ik ’_g fomd QE‘;E@
L« O | (15)

Another important characteristic related to sets 0§ and QF is that how greater are the
values selected for o and 3 more restrict would become these sets. This means that when-
ever the manager increases the probabilities of satistying (4) and (5), the spaces provided
by (11} and (15) would become, simultaneously, narrower. For example, let’s take two dis-
tinct probability measures for the inventory space, i.e., a; and o, where o, > a4, as a con-
sequence, it is possible to show that QX < Q¥ vk.

(3 step) Computing the linear gain

The gain Gy, provides the necessary adjustments in the production variable P, in order to
maintain the I, as close as possible of the mean optimal inventory level |, (i.e.,}, acts as a
desired set-point level to be followed during the planning process). To reduce the impact of
variation of inventory and production variables (remember that both variables are Gaussian
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random variables), the gain is obtained from a minimum variance problem (Astrom, 1970),
that is formulated as follows (Geromel and Silva Filho, 1989):

Min{V! + 2V |
Lig
s.t
V] =(1-G)? V!, + VP
VP =G2ev) (17)

The linear optimal gain provided by (17) is given by Gy=1/(1-)y). The parameter i,
denotes the tradeoff between the simultaneous growing on the evolution of the variances
over the periods of planning horizon (Silva Filho, 1999). Note that the problem (17) is
used to compute the gain G by two reasons. First, it preserves the linear-Gaussian nature
of the process; and second, it reduces the variability of the lower and upper boundaries of
the spaces Qf and Qf, since (17) minimizes the inventory and production variances
simultaneously. In fact, note from (11) and (15) that the upper and lower boundaries
depend strongly on the demand variances. Following (Geromel and Silva Fitho., 1989) the
tradeoff parameter can be computed as follows: 2y, = (Aik}?*/ (z&Pk)z, where
Al =1 1, and APy = Pi =P, This result is due to the application of the Chebyshev
theorem (Chou, 1972). See Appendix A to know how to use this theorem to determine the
optimal parameter ;.

Formulating the NSDF algorithm
From the above results, a non-conventional SDP algorithm applied to the problem (1)

can be formulated as follows: an optimal sequential production policy {Py, Py, ..., P} is to

be found as solution of the following algorithm:

J(r)=Frr)
i (ly) = Min i{F@;{%k}%jkﬁ{hﬁ};ﬁ

PeClf (18)
The recurrence (18) indicates that it is possible to find a closed-loop policy for the prob-
lem (6). This recurrence is implicitly subject to the dynamic evolution of the inventory bal-
ance equation (1). The optimal production cost is given by J:, = Jo(l,) that depends on
the initial inventory level I; and the probability measures ¢y, and By, provided by the man-
ager. It is worth mentioning that the values chosen for oy and B, can provide important
managerial insights to managers, particularly, related to their expectation about the cus-
tomer satisfaction. Therefore, it allows studying policies of meeting demand over the time
periods and, at the same time, to investigate the cost/benefits impact of these policies in
relation to the productivity rates and customer service. For example, setting B=0=0.95 indi-

83
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cates respectively that the production operates with almost maximal capacity and the
objective is to meet demand at least 95% of time (i.e., delivering finished products on right
time, without delays). Surely, this managerial decision has a high impact on the customer
service level. Finally, the open-loop solution of (1), which is, a deterministic optimal
sequential mean optimal solution for the stochastic problem, is a particular case of NSDP
procedure. To verify this, it is enough to set ay and f3y equal to 1/2.

An [llustrative Example
Consider a hypothetical firm that produces a very large amount of products but very

similar. All products can be aggregated into a single family. The managerial objective is to
develop an aggregate multi-period optimal production plan for the next 12 months. Such
plan must be used by managers to get insight about the rational use of the firm's resources
on forwards periods and, therefore, to help them to anticipate managerial decisions, partic-

ularly, related to fluctuation of demand.

Problem’s data
The main aggreqate data are: (a) the lower and upper levels of production capacity are 2

and 10 unites per month, respectively. The lower level is associated with managerial strate-
gies of reducing the idleness. level of production capacity; (b) considering that the firm
makes to stock, a physical unit of storage of the end-products must be considered. Thus,
there are lower and upper limits that cannot be violated by any reasons. For this study, it is
assumed an upper limit of storage of 16 unites of end-products and 4 unites of end-product
as lower limit (i.e., safety stock). The objective of this safety stock is to be used as preven-
tion against stockout which can lead to loss customers for the concurrence. The sales
department maintains a monthly historical of customer orders (i.e. unites of aggregate fin-
ished products that are sold per month). From this historical of sales, the analyst can com-
pute the first and second statistic moments (i.e. the mean and variance of demand) that are

given by table 2:

Table 7 — First and second statistic moments of demand.
Manth Jan. | Feb. | Mar | Apr | May | Jun. | Jul. | Aug | Sep. Oct.| Nov.| Dec

B, 7 8 9 7 6 4 5 4 7 7 6 8

Seandard deviaton: g,=2.5

A quadratic objective function F(Iy, Py) = h-(Ip)? + c(P,)? is used in this example. The
production and inventory costs are respectively: c=1.0 e h=2.0. Other costs, such as over-
time costs, firing and hiring costs, and so on, will not be considered in this study. The plan-

-ﬂ



_— — S

sitiar Journal OF Operations & Production Management | 85
Volume [, Number |, 2004, pp. 73-92 |

i

ning horizon is 12 months and initial inventory level is 10 units. The inventory level at the
end period (i.e., k=12) is assumed to be free.

Solution
Four cases are discussed now. They are related to the probability measures o and f3, cho-

sen a priori by the manager. Using the data above for formulating the problem (6) and, in
sequel, applying the NSDP procedure (18) for different probabilities degrees, the four cases
were obtained. These results are illustrated in the figures 2 and 3 and a discussion follows
next. It is worth mentioning that the space shown in the figure 3 is exactly a composition
of the spaces QO and Q). In this figure, the vertical axis contains the production ampli-
tudes (i.e., the space of production policies given by (%) and the horizontal axis contains
the lower and upper bounds provided by the space Qf versus the k periods of planning
horizon T.

Case I (=P=0.5): This means that the plan can fail to meet demand at a given period of
the planning horizon. In this case, the solution provided by (18) works well only if the
demand is set exactly equal to its average level. Using control theory jargon, one can say
that such solution was derived from a system operating in open-loop pattern. Figure 2(a)
exhibits inventory and production trajectories obtained from a simulation scheme that con-
siders the demand represented by a synthetic random sequence. Note that the lower bound-
ary of inventory variable (i.e. the safety stock level allowed) was violated in two periods
(4&* and 12t periods). The reason of this is that the “open-loop plan” did not get to antic-
ipate the demand fluctuation, particularly developing a safety stock strategy to prevent
against demand oscillations. Thus it is possible to consider that the safety stock, defined by
the manager, is not sufficient to meet demand in these periods. As a consequernce, there is
a high risk of stock out. This undesired occurrence can lead to the loss of customers for the
: concurrence due to delays in delivering products on right time. It is worth mentioning that
| to operate under this condition, the manager relies deeply in his persuasion power of nego-
| tiating, with his customers, new due-dates of delivering finished products.

é Case I (o=f}=0.95): In this case, the spaces (% and O} are extremely more restricted
i (i.e., narrower) than the case before. See section 4.1 to a brief discussion about the charac-
| teristic related to the influence of probabilities degrees over the dimension of the produc-
J k tion (11) and inventory (15) spaces. From this case, the characteristic can be visuatized by
| comparing the figures 3(a) and 3(b) that show the combination of the production and
inventory spaces in 3D format for a=p=50% and a=p=95%, respectively. Note that when-
ever managers set the values of o and f near to 1 (one), they intend to improve the cus-
tomer satisfaction level (ie., improve the customer service). This means that the main goals
are to meet the demand and to minimize the idleness of production capacity, at any period
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of planning horizon. Figure 2(b) illustrates this aspect. Differently of case I, in this case,
the inventory levels do not violate the lower boundary (dotted line). Evidently, to guaran-
tee this low risk of no-satisfying customer orders, a price must be paid. This price can be
measured by the increase of the inventory level at the future periods of planning horizon.
As a result, the total production cost increases proportionally. Moreover, comparing the pro-
duction policies exhibited by figures 2.(a) and 2.(b), it is possible to verify that the produc-
tion rate, in this case, is smoother than in the case I. It is important to add that the
continuous oscillation verified in the production levels (very common in make-to-stock
environments) can reveal the weakness of the manager to deal with demand fluctuation by
products in future periods of planning horizon.

Case IMI (=0.95 $=0.5) and Case IV (x=0.5 =0.95): The idea here is to consider the val-
ues of o and P varying between the extreme values of their probabilistic ranges (i.e., o and
B e [Y2, 1). Setting, for example, o equal to 0.5 and B equal to 0.95, and vice-versa. The
results are illustrated in the figures 2(c) and 2(b) that show simulated trajectories, and fig-
ures 3(c) and 3(d) that show the spaces of the production policies. Note that the spaces cre-
ated by the cases III and IV (figure 3(c) and 3(d)) are very close to the spaces created by the
case I and I respectively. These characteristics are due to the strong influence of B over the
dimension of the space created by (15), as discussed in section 4.1. Note also that small val-
ues of B imply in increasing the dimension of space Qi . This means that the number of
feasible production policies, given by space (11), increases in a measure that the values of o
closes to 2. The simulated trajectories illustrated by figures 2(c) and 2(d) follow approxi-
mately the same characteristics exhibited by figures 2(a) and 2(b). However, differently of
the case 1, the inventory trajectory provided by the case Il does not violate the lower
bound (i.e., the safety stock).

(a) 0=P=0.5 and J ,p=215 (b) a=p=0.95 and J,,z=263

IYENTORY

Figure 2 — The simulate optimal inventory and production trajectories.
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(c) @=0.95, B=0.5 and J =248
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Figure 2 — The simulate optimal inventory and production trajectories — continued.

Comparing the production costs exhibited in the label of figures 2, it is possible to

observe that the production policy provided by I (i.e. a=p=0.5) presents the best cost of all
cases investigated. On the other hand, the policy provided by the case I (i.e., a=[3=0.95)
incurred in the worst total cost. Note that the reason for the growing of the cost, in the

case II, is the managerial strategy of considering the customer satisfaction level set equal to

95% (l.e., close to 100% of customer service). To reach such satisfaction level, it is necessary

to maintain high levels of end-products storage in the warehouses for ready delivery.

(a) a=p=0.5

Froguction iy

EPACE OF PRODUCTION POLIGIES

ventory Sigurstization i

Froguatton wels

veniony dissratizaton H

(b) a=p=0.95

EPACE OF PRODUCTION FOLICES
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(c) ©=0.95, =0.5 (d) «=0.5, p=0.95
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wogrinty Gis0iety ation

Figure 3 - The space of the production policies.

Conclusions
This paper discussed a way to deal with sequential optimal stochastic production plan-

ning problem with chance constraints on decision variables. A constrained stochastic
dynamic programming algorithm, denoted as NSDP, was investigated as a possible strategy
to develop a production plan. From NSDP, some characteristics related to the equivalent
deterministic constraints and the influence of probabilistic degrees in these constraints
were introduced. A simple example allowed to visualize these characteristics and to under-
stand the cost/benefit of identifying an appropriate production policy. It is worth mention-
ing that, in aggregate production planning context, the approach studied here can be used
as an important managerial tool. In fact, despite of the dimension, the approach can be
used to practical problem related to flow-shop process where the end-products can be
aggregated in families. In this case, the large scale problem can be divided in smallest prob-
lems and each one can be solved by parallel programming. Finally, the main advantage of
this approach is that it can help the manager to obtain insights about the rational use of

the Hrm's resources,
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Appendix A
The idea of this Appendix is to determine the penalization parameter related to the

variance problem (17). In this way, it is initially interesting to investigate the effect of
shifting the mean value of inventory and production variables into their respective sets
€, and Qp . As these variables are Gaussian random processes, it is almost intuitive that
when their mean values shift from the lower boundary to the upper boundary, their density
probability functions will be maximum when their mean values reach the center (i.e. the
niddle) of the interval formed by the lower and upper boundaries of their respective spaces

o and Op o, This characteristic can be expressed probabilistically as follows:

i ) (A.1)
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(A.2)

Let’s handle de expression (A.1). First, consider that Qf = {g N ] and I, = I+ O s

where I is the mean value of inventory and 6;,~N(0, V'), ie., a Gaussian white noise.

Thus, it is possible to determine that:

i f
§ ?run%l <ho <L o

= Prob. i, < Iy *{3, =

R ——

=Prob, I -1 €814

= Prob.

= Prob.

.,
>
(W]

s




Brasilian Journal Of Operations & Production Management § 191
Volume 1, Number 1, 2004, pp. 73-92
|

Besides, considering f; —1, = Al, and keeping in mind that §,=I,- 1, , results that:

%

A;;\;

[
?mh{h{ e 0k,
2 (A.4)
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Applying the Chebyshev’s Theorem (see, Chou (1973), pages 60 and 61) it is possible to
re-write (A.4) as follows:

i
?f@h{‘ig“"lk <é§i 21-~4. VE
\ 2

(AL )2 (A.5)
Note that this theorem allows determining how the variance of inventory can be used to
provide information about the of probability mulation in intervals centered on

the first static moment (i.e. the mean expected value). As an immediate consequence, com-
paring the inequalities (A.1) and (A.5) results that:
\
(Aly)? (A.6)
Proceeding, exactly, in analogous way for the distribution of the production variable
results that:

Prob.(I, e Q%) =Prob.(I, <, <1, )2 1-4-

Vi
(AP }? (A.7)
Note that the interest here is to reduce the possibility of unfeasibility of the problem
(6). In this way, the idea is to maximize the probability associated with the inventory and
production constraint in the problem (6). Thus, observing the inequalities (A.6) and (A.7),
this idea can be explored as follows:

Prob.(P, e Qk;)=Prob.(P, <P, <P, )2 1-4.

YR/
(Al )2 (AP)? ) (A.8)

. [
Max Prob.(l, <I, <I,)+Prob. Li, <P, <P }> I

Note also that to maximize the probabilities in inequality (A.8) means to minimize the
evolution of the variance present in upper boundary of (A.8). That is:

p

Min| V§ + ———2-

\ (AP )2 ) (A.9)

The problem (A.9) is similar to the problem defined in (17). Comparing both problems,
the trade-off parameter A" can be determined as being:

A= (8l (A.10)
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