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Abstract
Design and analysis of experiments are extensively used in quality improvement efforts, for

identifying the effects of controllable variables (factors) over response variables associated
to the quality level of a product. When the effects are not simply additive and/or the
response variance is not homogeneous (as is the case of many industrial applications),
Generalized Linear Models (GLMs) constitute a widely suitable approach to the analysis.
Their application is however hindered if specialized software for solution is not available - a
situation which leads in general to the use of simpler but inappropriate models, and
consequenitly to invalid results and conclusions. This paper shows how GLMs can be solved
using spreadsheet software. This can fit the needs of occasional users, needing to solve not
very large problems; it can also be advantageous for teaching and training purposes.

Key Words: Design of Experiments; Quality Improvement; Regression Analysis; Generalized
Linear Models; Spreadsheet Applications.

Introduction
Statistical design of experiments (DOE) is extensively used in quality improvement

efforts, with the aim of identifying the relationship between controllable variables {factors)
and response variables associated to the quality level of a product. The model most com-
monly used to represent the functional relationship between the controllable variables X
and the response variable v (considering here the case of a univariate response) is the clas-
sic linear additive model:

y=ux)+e 1)

where:

H(X) =Bp + Brxg + Boxp + ... + Pix (2)
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represents the systematic part of the model, i.e., the mean level of the response for each
value of the vector of controllable variables x’ =(x;, x,, ..., x;), and e, called the error, or
noise, is the random component that represents the inherent varability of the response
around the mean level. Note that Eq. (2) can accommodate models that are nonlinear in the
original variables, by simply writing functions of one or more variables as new variables (for
example, representing x;x, by x3, or x g’b}; x;), provided that the resulting expression is lin-
ear in the parameters.

Traditionally, the model parameters f3), /3, ... f} are estimated using the ordinary least
squares method (OLS), which assumes linearity in the parameters and normality and homo-
geneity of the variance of the response, that is, e ~ N(0,0%).

Industnal applications very often involve models that do not satisfy these conditions,
for instance binomial models for fraction defective, Poisson models for counts of defects or
gamma models used in life-testing.

The usual approach in such cases has been to work with a transformed response: Bis-
gaard and Fuller (1994) present two examples: one for binomial responses and other for
Poisson responses. Box and Fung (1995) analyzed designed experiments for life testing. The
drawback of this approach is that, with a single transformation, one cannot always obtain
at the same time an additive model and a normal response with constant variance. An alter-
native approach is offered by the Generalized Linear Models (GLM), which do not require
these conditions.

In a GLM the response may follow any probability distribution from the exponential
family (for a description of the exponential family of distributions, see, for instance,
McCullough and Nelder, 1989). The normal, exponential, gamma, Poisson and hinomial dis-
tributions, for example, belong to this family. For different values (levels) of the factors, the
response - while possessing similar probability distributions ~ may have different parame-
ter values. Moreover, the functional relationship between the controllable variables and the
response is not required to be linear as in Eq. (2), but just given by a (monotone and differ-
entiable) link function g('): a function of the mean response whose value equals a linear
combination of the controllable variables, that is:

n=g(n)=x’p (3)

where (3 is the vector of parameters of the model.

In other words, the model for the response differs from Eq. (2) in that the left-hand side
is a function g(x) of the mean response, instead of the mean response itself.

A detailed account of GLMs can be found in (McCullough and Nelder, 1989). A simpler
introduction to the subject is offered in (Dobson, 1990). Mustrative examples with bino-
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mial, Poisson and gamma responses, in which the GLMs results outperformed the results of
the analysis of the transformed Tesponse, are presented in Hamada and Nelder (1997),
Myers and Montgomery (1997) and Lewis et al. (2001).

The solution of GLMs requires finding the estimates of the parameters /& that maximize
likelihood of the set of observations. This is accomplished by numerical search procedures
involving a certain amount of computation. Routines for solution of GLMs are found in
some statistical packages, such as GLIM and GenStat. The non-availability of this kind of
software may hinder the employment of GLMs, leading eventually to the use of less appro-
priate models.

This paper shows how GLMs can be solved with electronic spreadsheets, being intended
for occasional users of GLMs, for small problems. We also trust that solving GLMs with
spreadsheets can be useful for teaching and training purposes, by rendering apparent the
mechanics of solution. A model with Poisson response is used here as an illustration, but
the approach is general, and applicable to other models, requiring only trivial modifications.

The next two sections describe the model and the solution algorithm. The spreadsheet
implementation of the algorithm is then illustrated by means of a numerical example.

Generalized Linear Model with Poisson Response and Logarithmic Link Function
Denote by y the vector of the n observed values of the Poisson- distributed response of

an unreplicated 2* factorial design. The index i (i=1,2,..., n) refers to the combination of
levels of the factors (run). The mass probability function of each element y;of yis:

Hioy, Vi
, V€ H; 4
Sy i) = S @
/i
Let us consider the multiplicative model for the mean, in the form;
( )

M 485;? ;31«% ; \?k{;;{?;g (5)

where X; is the value of the covariate x; in the i-th run; thus, p=k+1 is the number of
model parameters.

Recalling that the relationship between the mean level of the response and the vector x
should be given by a link function 77=g(u) =x' B, let us define x;5=1, for every i=1, 2, .
This puts (5) into the form H=exp(x;’ ), where x;" = (1, x;, X;,, ..., > T sezzegp@nﬁmg
therefore to the link function:
n=Ihu=x"’p

s,
L
e
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The likelihood function of n observations from a Poisson distribution is:

L ) "t Y “’
g’{}: Hff, {\}’{;,;3‘;)z n"ﬂm;{fﬂ" {;}
it

V.
[ B

Taking natural logarithms, the log-likelihood function is found to be:
Hy,u)=inLiy,p)= Y£ n gty = g1 In( ;1] (8)

The reader non-familiar with GLMs is referred to (McCullough and Nelder, 1989) or to
(Dobson, 1990).

Algorithm for Parameter Estimation
The algorithm for obtaining the maximum likelihood estimate b for the vector of param-

eters /3 1s described below. This algorithm is called IRSL - iterative reweighted least squares
(see, for instance, McCullough and Nelder, 1989, or Dobson, 1990). It makes use of the

equation:
bl < [xw x| xwten ) (9)

where b is the estimated parameter vector

(10)
X is the matrix of values of the controllable variables, in the form
oy |
1 i
R
:i Fo Xk J JN
(11)
W is a matrix of weights
Aoy :
wim | 0 22 0]
% 3
I N
Lo 0w
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whose diagonal elements wfjﬁ} are given by:

‘gl?”}\‘z

. g/ )’\? 3
%@?{m} = ! ({Zii

i=1,2,--.n

i
©var)|{on, )
and z is the vector of adjusted variables

[_(m

=i
Amy

AL b

{7}
“~n

£

with elements given by

m) =50 4y ;j on; )
Si‘ jx;?{, 4 },ik}_{ei |~ }
\OH;

P=1
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(13)

(14)

(15)

Ly H

Examining Eq. (15), recall that 7 and 1 depend on p through (3). This shows that Eq.
(9) is recursive. In each iteration, the parameter vector estimate b1 is computed as a

function of the previous estimate b,

In our experience, when given a good initial solution, the algorithm converges quickly.
Figure 1 shows the functional dependencies, and Figure 2 shows the sequence of steps of
the algorithm, which is detailed in the sequel, for the illustrative case of Poisson response
and logarithmic link function. For other models, the particular expressions should be sub-
stituted accordingly, but the steps of the algorithm remain the same.

We start with the description of the iterative loop; then, we show how the initial esti-
mate b for the parameter vector can be obtained, for use in the first iteration.
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Figure 2 — ISRL algorithm ; to!
Iterative loop , Gt
Let m indicate the iteration; the m-th iteration makes use of the estimate b of the
parameter vector, derives from it the estimates of N, i, z and W, and ends by determining the
the updated estimate b to be used in the next iteration. an i
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= Xp"" (16)

(17)

where each [i; is obtained inverting the link function. For the case of the link function
in Eq. (6), this gives:

“{m) ?{ns})

m" = exp(r;z (18)

(=12 n

Step 3: Compute the vector z. In the case of the link function in Eq. (6), Eq. (15) for
the elements of z becomes:

i)
{m) simy o, WY TOHG .
; ; :’}?;' f_r_;_* g!r; L I:Lz,“ﬁ.?? (}g}

i

Step 4: Compute the elements of the diagonal matrix W, given by (13), which, with
Poisson response and link function given by (6), become:

= ) i=12-n (20}

== ;

Am}

W i

Step 5: Update the estimate vector b:

gzénw iy . f}g%,%tméx} L X?ﬁg;i;@?z{é?g% (gf i’e?eaigi}

Step 6: Test the convergence of the algorithm, by verifying if some appropriate (user-

: {m+1 ‘il - see g M
defined) measure of distance between b(™?%) and b is smaller than a specified tolerance
value. If the convergence has occurred, END the algorithm. If not, increment m and go back

to Step 1, for the next iteration.

Obtaining the initial estimate bV for the parameter vector
There is no unique and general method for obtaining the initial estimate b'"). One of
the most commonly used procedures - which will be adopted here ~ is to estimate b'") from

an initial estimate p" for the mean vector 1. A reasonable initial estimate is "'=y. Note
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that in the Iterative Loop the obtention of 1" constitutes Step 2; so, the initial estimate
b{¥) can be obtained from the initial estimate 11 proceeding through Steps 3, 4 and 5.
There is, nevertheless, a difference with respect to the iterations of the Iterative Loop: it

will be necessary to calculate the values i 5% = g(n f}} because Step 3 requires an estimate of

n. To sum all up, the sequence becomes:

a:) Set‘;};{;% = Pl 2 n (21}

332 Sétf’;}jﬂ? = gf;}fgg}} i=L 2 {23}

Y

which, in our case, due to {6) becomes:
B =ma™ Ly PR (23)

c) Execute Step 3 of the Iterative Loop. Note that, in the initialization, because of (21),

Eq. (19) in Step 3 becomes simply:

2 = i P=12 (24)
which in tumn, in our model, because of (23) and (21), becomes:
..{‘:}? — }na: i = ?qz,u_’;g {28}

=

d) Execute Steps 4 and 5 of the Iterative Loop, obtaining b(%),

Spreadsheet Implementation of the Algorithm
Let us illustrate the spreadsheet implementation of the algorithm by the analysis of a

simulated experiment with an unreplicated 23 factorial design. It will be assumed that the

reader knows how to invert, transpose and multiply matrices using the spreadsheet,

Underlying model and simulated data
The data were randomly generated according to the following multiplicative model for

the mean:

a=10005)0(0.7): (1.4)0% (26)

where: 10 is the base mean fg: the factors A, B and C are represented by the coded
variables xy, x, and x3, respectively; and 1.5, 0.7 and 1.4, are the effects of A, B and BC
respectively. The other effects are not significant and therefore set equal to 1.

The model given by Eq. (26) is equivalent to:

47 exp(2.302+0.405x,-0.357x,+0.3 36xyx3) (27}
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Table 1 presents the design along with the theoretical means 44 calculated by (26) and
the responses y; randomly generated according to a Poisson(z;) distribution.

Table | — 2* Factorial Design with the Theoretical Mean and the Generated Response.

Run Xy x3 X3 4 Yi
| -1 - -1 133 {4
2 | -f -1 300 29
3 -4 | f 33 4
4 i z E ‘ 75 5
5 | -1 { 6.8 7
[ } -1 ! 153 1S
7 - i i &5 4
g i i H 4.7 17

Data entry and initial estimate b(!)
The input data are the design matrix X (where the factor levels are represented by -1

and +1) and the response vector y, as in Figure 3. Note that the first column of the matrix
X is filled with 1's, corresponding, by definition, to Xio=1, for i=1, 2, ..., n. For the initializa-
tion (as seen in the subsection “Obtaining the initial estimate b'") for the parameter vec-
tor”), one should set {z? = y;, and therefore In ﬁ? = In ;}? = In y, and then proceed
through steps 3, 4 and 5 as follows. First, Eq. (19) in Step 3 becomes simply z? = ﬁ}g (Eq.
13), so the column with elements z? can be obtained simply by setting z? = In y;. Step 4
(obtention of the matrix W) is performed in 3 stages: first, by generating the elements Wy
in a separate column; next, by filling an nxn matrix with zeros; and finally, by copying the
elements w;; (one by one) to the respective cell of the diagonal of the matrix, overwriting
the zeros. To generate the column of elements wy;, remember that each w;; is the variance of
Vi, which, in the case of the Poisson distribution, equals (see Eq. 10) the mean 1 — whose
initial estimate in turn, as seen above and in Eq. (21), equals the response value y; itself,
Therefore, in the particular case of the Poisson model, the column of elements asif; is identi-
cal to the column that contains the vector v.

Step 5 is to compute b{") by Eq. (9). This involves the following sequence of operations:
transpose the matrix X, obtaining X’; next multiply X’ by W% to obtain the matrix
X' W which should be in tum multiplied by X to obtain the matrix X’ W%X: now invert
this matrix to obtain (X’ W‘g}}}(}”ii then multiply X’ w(© by the vector z(?, obtaining the
column vector X’ W(%2(9): ang finally multiply the matrix (X’ ng}}X}”E by the column vec-
tor X' W92 which gives b,

Figure 4 shows all intermediate matrices, in the order in which they are calculated
(from left to right and from top to bottom), as well as the resulting vector b(),
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X ox X x5 x K gl Yy 4= ow, W
=lny,

5 o z | ; P14 264 14014 0 0 0 0 0 0 0

| a e P29 337 29 0 29 0 0 0 0 0 O
[ i % - i P4 13 410 0 4 0 0 0 0 0
i | ! ! 4 b b5 16l 570 0 0 5 0 0 0 0
S | | 4 {7 1% 770 0 0 0 7 0 0 0
j | R I I 6 277 4610 0 0 0 0 6 0 0
P | -1 z N b4 139 4]0 0 0 0 0 0 4 0
i ; [ | s | I 17 28 17,0 0 0 0 0 0 0 {7
Figure 3 — Input data and calculation of the matrix W%

X X Wt X WX
P b b vl 29 45 7 06 4 1719 38 -3 .10 8 6 32
bbb b L4 29 4 05 7 06 4 17038 9% -10 36 6 -8 I8
bbb b e b -4 29 405 7 18 70,36 -10 96 38 32 18 8
Poelsb b b el b 1429 405 7 46 4 U710 236 38 9% 18 32 6
Poelo=l <l b b b ] 14029 4 5 7 16 4 17/ -8 6 32 18 96 38 -3
Poelb b -l b -l 429 405 7 16 4 1700 6 8 18 32 38 9% -i0
Pobo-b bbb b4 29 405 7 dd6 4 17132 18 8 6 -3 -10 %
(X WXy ! X w00 bt

00166 00059 00067 00020 -00008 -00022 -0.0043 2255 260 | Intercept
00059 00159 00026 00068 00033 00009 -00028 0435 137 xi
00067 00026 00162 00057 00041 00003 -0.0016 0414 4250 %2
00020 00068 00057 00167 00016 -0.0035 -0.0031 0.020 46 | xIx2
00008 00033 00041 -00016 00165 -00048 00063 0.008 -36 3
00022 00009  -00003 00035 00048 00138 00004 0106 01 xix3
00043 00028 00016 00031 00063 00004 00148 0361 H7 L x2x3

Figure 4 — Completion of the initialization with the intermediate matrices and the initial estimate b{!)

From this point on, the iterative process begins. As will be seen, it is sufficient to set up

the spreadsheet for the first iteration; a neat trick enables performing subsequent iterations

oy

by an elementary action {this renders the time to perform one iteration human-bound, but
in practice this does not constitute a drawback, since the algorithm converges very
quickly). Only the first iteration is different, as it involves building the spreadsheet for the

Iterative Loop. It will be described now, step by step.
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First iteration

For the sake of clarity, we will construct a separate spreadsheet for the Iterative Loop, as
shown in Figure 5. We start by copying the column vector b'Y) and the matrix X, placing
them side by side, as shown in Block 1 of Figure 5. From this point on, we follow the steps
of the Iterative Loop. Since this spreadsheet is set for all iterations, b() in Figure 5 receives
the heading b(m). For simplicity, in the spreadsheet, 1, y1, W and z did not receive any
index (there is no ambiguity, since the index is always m), the “hats” over n and L were
supressed, and the matrix (X‘W@:’X)’l is noted (X'WX)-1. Only the vector b remains
indexed in order to distinguish between b{™*1) and b0

Step 1: Computing the vector 4 = xp{")

Multiply the matrix X by the column vector b(™ inserting the result in a column vector
‘0" (column I, Block 1, in Figure 5).

Step 2: Computing the vector of means {am}

Calculate the elements of the vector {z{m) (column J, Block 1, in Figure 5), from the ele-
ments of column ﬁmg, by Eq. (18). Each element of {im} is the exponential of the corre-
sponding element of the vector 1 " (column I).

Step 3: Computing the vector 2™,

Use Eq. (19), with the elements of the vectors 1 (column I), p (column J) and y (col-
umn H) as arguments. Enter the vector z in column K.

Step 4: Computing the matrix W.

Matrix W is constructed as before, in the initialization: first a column of values w;, is
generated (columin M, Block 1); next an nxn matrix is filled with zeros; and finally the w;;
values are copied into the cells of the matrix diagonal. The w;; values are obtained from Eq.
(20): it is sufficient to set their elements equal to the corresponding elements of column [
Figure 5 shows the matrix W in the columns I to P of Block 2.

Step 5: Updating the estimate b of the parameter vector £

As seen, this is done according to Eq. (9) and involves a sequence of operations. First,
construct the matrix X’ and the product matrices X’ W and X’ WX. Next, calculate the
inverse matrix (X' WX)! and the product matrix X’ Wz. Finally, multiply (X" WX)! and
X’ Wz, obtaining the column vector b(? (under the heading b(m+1)).,

Step 6: Testing the convergence of the solution.

Convergence is considered to have occurred when b and B are close enough,
according to some appropriate, user-defined, measure of distance. We may enter the for-
mula of the measure of distance chosen into any cell of the spreadsheet for automatic cal-
culation. Alternatively, we can check by mere visual inspection whether the corresponding
elements of b and b1 a1e identical up to a predefined number of decimal places. (This
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griel V,fg% . fxl, 2'

is equivalent in formal terms to using the greatest absolute difference 1‘
...n, as measure of distance between b and b1y,

Using this criterion, we observe that the estimates in b and b{™) still differ in the
second decimal place; we therefore return to Step 1 for the second iteration.

AjBlc Dl EJFIGIHTITTUTKIEIMIN]OT®P
i
7 i Black
3 X
4 %2 xix I v ¢ i bm)
5 ! t - I 1 i f P4 2.6 15
a1 : 1 : i 1 I 34 284 5,435
71 ‘ e i ! 4 3 ! it w4
g t ! i ; -1 -1 16 0.2
Bl -1 -1 I i -1 -1 7 hXY 0,008
W0l | -1 -1 i i -1 15 2.8 171 0,106
Ei B i i i | | ; 1 20 50 0,361
A i ! I ] i i 17128 fieug 28 Lo,
13
14
15 Block 2
5 X Y
17 H 1 i H i H 154 5.0} [$}1] (.4 .4} e
Bt i -1 i -1 j -1 ! W80 08 08 G000
187 i i - | i l 90 3 i1 4.4 8,0
20 { -1 -1 ; { -1 ! i 048 00 a6 [ B R
21 -1 -1 -1 -1 i H | i 0.4 0.4 1.0 0.0 0.4 0.4
22 { I t -1 -1 i i | 0.4 0,0 [1X1] 10 0.0 G54
23 i -1 -1 -4 : i [ER7 IS RS S 82 i
24 R I R O Rt B N B X P
25
27 Block 3
28 XWX
24 3 2 17 3 61 97 3% 36 -l 8 5 32
30 -3 4 175 16 1 3% 97 i .3 4 8 9
31 3 f 5 17 16 1 -6 TN A £ 12 G %
32 ] 3 f o S T T R L P O sz 4
33 1 6 6 17 5 14 4 32 4 97 W36
24 3 & 4 7 {6 6 % e 32 37 -1
35 3 -6 6 17 3 16 2 5 6 236 -0 )7
38
37
38 Bleck 4
33 (X' WX)-1 XWz bim+1

3 M7 5002 -0U01 0,001 264} 2,242 { Intere

§ 134 0442
43 F-0,007 0, 46
44 Lo o] - 237
A58 BIERESTRNY i4
46 }-0,005 -0,(10 {13
47
Figure 5 ~ Results of lteration |,
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Second and subsequent iterations
Figure 5 shows all the first iteration data. The spreadsheet is now ready for each subse-

quent iteration, which can then be executed using an elementary action: transfer the new
estimate b(®) (column B in Block 4, denoted b(m+1) in the figure) to the cells containing
the previous estimate (column 0 in Block 1), using the commands “Copy” and “Paste spe-
cial... Values”. This will generate another complete iteration, transforming the spreadsheet
in Figure 5 into the spreadsheet in Figure 6 (without the columns StdEn, ChiSq and P-value
in Block 4), which shows all the second iteration data, including the new estimate b(®)
(denoted b(m+1) in Figure 6).

From this point on, every subsequent iteration can be generated by repeating this
“Copy/Paste special... Values” command. In Microsoft Excel®, this can be done simply by
pressing the “F4” key, or by clicking the mouse on the “paste” button (with the clipboard
icon) on the standard toolbar.

Comparing the current estimate of the parameters in Figure 6 (column K, Block 4) with
the estimate from the previous iteration (cotumn 0 in Block 1) we may consider the conver-

gence to have been achieved.
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Block 1
X

xi 2 oxtx2 3 13 23y N n z

I -1 -1 1 -1 I I 14 | 27 11501 26

! I -1 -1 -1 -1 i 20 | 33 | 280 34

I -1 I -1 -1 I -1 4 1] 30| 14

I 1 ! I -1 -1 -1 5 18 | 60 ‘

I -1 -1 ! I -1 -1 7 18 | 60 ] 20

i ! -1 -1 I | L] 16 | 28 [ 170 28

I -1 ! -1 I -1 | 4 161 51 ] 14

I I I 1 I I | 17 { 28 160 28

Block 2

1 ! 1 i i 1 1 1 150 00 . 00
-1 1 -1 I -1 i -1 ! 00 280 00
-1 -1 | ! -1 -1 I I 00 00 30

! -1 -1 ] I -1 -1 I 0.0 00 00
-1 -1 -1 -1 1 I ! I 00 00 00

1 -1 1 -1 -1 I -1 1 00 00 00
! 1 -1 -1 -1 -1 | I 00 00 00 .

0.0 00 00

Block 3
X'W

15 28 3 6 6 17 3 16 | 96 38 36

1528 3 6 -6 17 -5 16 1 38 96 -0

215 28003 6 6  -17 5 16 1 36 <10 96

15 28 3 6 6 17 -5 16 | <10 36 38

Figure 6 — Results of lteration 2.

Model checking and refinement
The next step of the analysis is to test the effects (parameters) for significance, in order

to retain only the significant ones, obtaining thereby a more parsimonious model. In Figure
6, (X' WX)! is the covariance matrix of the parameters. Now look af Block 4 of the same
figure. The estimated standard errors of the parameters are just the square roots of the ele-




Brasilar: journal Of Operations & Produchion Management | 67

Volume |, Number i, 2004, pp. 53-72

ments of the diagonal of (X’ WX)'. These estimates are displayed in column K. Applying
Wald's test statistic:

-2

A (28)
StdEre( /1)

2

i
i

[
|
| |
|
L 4,

the test values (ChiSq) are in column N, and the corresponding P-values are in column
0.

The P-values corresponding to x;, Xz, X; X3 and to the intercept are all smaller than
0.0025 (the other ones are all greater than 0.36), so we conclude by the significance of the
corresponding effects (A, B and BC interaction) and retain only the parameters Lo B o
and /.

The reduced model spreadsheet is set up in the same way as for the complete model.
Figure 7 shows the first iteration for the reduced model.

The irﬁ’dall estimate vector b for the reduced model is then simply the vector
G 4 B ) retaining only the final estimates for the parameters /3, 3, B and 3,

obtained with the full model.
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X
xl 2 23 ¥ 7 N z wit b{m)
i -1 -1 1 14 26 133 26 133 2242
1 1 -1 1 29 35 323 34 323 0442
| -1 ! -1 4 Lo 27 13 27 0424
i ! i -1 5 19 66 16 6.6 0.366
! -1 -1 -1 7 9 64 19 64
! ! -1 -1 16 27 155 28 15.5
! -1 ! ! 4 L7 57 14 5.7
! ! i ! 17 26 138 19 138
W
i I ! ! i ! ! 133 60 00 00 80 00 00 00
=il ! -1 ! -1 S 00 323 00 00 00 00 00 00
=i -1 ! ! il -1 i 1006 00 27 00 00 00 00 00
! 1 -1 -1 Sl -1 i 106 00 00 66 00 00 00 00
00 00 00 00 64 04 00 00
06 00 00 00 00 155 00 00
8¢ 00 00 006 00 00 57 00
00 00 060 60 00 00 05 133
X'w XWX
i 32 3 7 6 6 6 14 9% 40 -39 34
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Figure 7 — Results of lteration | for the reduced model.

Comparing the updated estimate of the parameters (cells H30 to H33) with the estimate
from the previous iteration (cells L4 to L7), we see that convergence has not yet occurred.
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Figure 8 shows the second iteration for the reduced model.

The updated estimate of the parameters (cells H30 to H33) now differs from the previ-
ous one (cells L4 to L7) only by 0.001 in the first element, which can he considered as indi-
cating convergence.

The low P-values associated (cells L30 to L33) confirm the adequacy of the model. The
response model obtained is then:

it= exp{éj,féﬁ-f»{lé}E?x;a{?j%xg-&ﬁ.jé?xgxg) (29)

For the small number of data points used, these coefficients are very close to those of
the theoretical model:

A1 = exp(2.302+0.405x-0. 357 7+0.336x,x;) (30)
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The precision of the results can also be assessed in terms of the differenice between the

estimated and the theoretical means for each run. These are given in Table 2.

Table 2 — Theoretical and estimated means.

Run Theoretical mean Estimated mean Difference (%)

i 1333 1329 0,30
2 30,00 3071 2,31
3 333 302 10,26
4 7,50 6,98 745
5 6,80 6,65 126
6 1531 1535 0,26
7 6,53 6,04 811

8 14,70 13,96 530

Numerical precision issues
The numerical precision of the elements of inverse matrices is very sensitive to the par-

ticular inversion algorithm employed and also sensitive to the internal precision {number of
significant digits) used by the software. Spreadsheet software is not, in gereral, as precise
in performing matrix inversion as are statistical packages of well-proven efficiency such as
(for instance) SAS, so some caution is required. Nevertheless, the use of spreadsheet soft-
ware for solving GLMs is proposed here for occasional users, for small problems, or even for
teaching and training purposes. If this is the case, the small size of the matrices involved
ensures good precision of the results (unless the matrix to be inverted has a very particular
structure which is not likely to arise in GLMs). The user can always check the precision of
(XWX)'! simply by multiplying it by XWX and comparing the result with the identity
matrix, if desired. However, we tested the procedure by analyzing the data sets analyzed by
Hamada and Nelder (1997) and by Myers and Montgomery (1997), who used GENSTAT and
SAS. Our final results were identical to theirs up to the last digit (the number of significant
digits provided in the references ranged from three to five); so the precision of the results
can be considered satisfactory for the purposes of statistical analysis in view of the exist-

ence of experimental errors.

Conclusions
We have shown how analysis of experiments using Generalized Linear Models can be per-

formed with the help of spreadsheet software. Once the spreadsheet is set up for the first
iteration, every additional iteration can be performed with an elementary operation; in
Microsoft Excel®, a single mouse click on the “paste” button, or a stroke on the “F4” key, is

sufficient. The number of iterations required for convergernice is very small.
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The use of the spreadsheet software for GLM implementation was illustrated for the par-
ticular case of a Poisson model for the response, with logarithmic link function, but the pro-
cedure is general. For other models of the response and link function, the particular
expressions for calculating the elements of the vector 1 of estimated means by the inverse
of the link function (Eg. 8), the elements of the diagonal matrix W (Eq. 10} and of the vec-
tor z of adjusted variables (Eq. 9) will change accordingly; namely, the expressions to be
used will be the inverse of the link function and expressions derived from the generic Egs.
(13) and (15) in accordance with the model adopted.

Spreadsheet solution of GLMs may fit the needs of occasional users of GLMs, for small
problems, and has the advantage of being accessible to everyone. It is also interesting for
teaching and training purpoeses, in illustrating the use of GLMs in data analysis in general,
and because it exposes the mechanics of the solution algorithm.
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