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HOW CONNECTIVITY AND SEARCH FOR PRODUCERS IMPACT 
PRODUCTION IN INDUSTRY 4.0 NETWORKS

ABSTRACT
Technological evolutions lead to changes in production processes; the Fourth In-

dustrial Revolution has been called Industry 4.0, as it integrates Cyber-Physical Systems 
and the Internet of Things into supply chains. Large complex networks are the core struc-
ture of Industry 4.0: any node in a network can demand a task, which can be answered by 
one node or a set of them, collaboratively, when they are connected. In this paper, the aim 
is to verify how (i) network’s connectivity (average degree) and (ii) the number of levels 
covered in nodes search impacts the total of production tasks completely performed in 
the network. To achieve the goal of this paper, two hypotheses were formulated and test-
ed in a computer simulation environment developed based on a modeling and simulation 
study. Results showed that the higher the network’s average degree is (their nodes are 
more connected), the greater are the number of tasks performed; in addition, generally, 
the greater are the levels defined in the search for nodes, the more tasks are completely 
executed. This paper’s main limitations are related to the simulation process, which led to 
a simplification of production process. The results found can be applied in several Industry 
4.0 networks, such as additive manufacturing and collaborative networks, and this paper 
is original due to the use of simulation to test this kind of hypotheses in an Industry 4.0 
production network.
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1. INTRODUCTION 

Manufacturing scenarios are becoming more complex and 
dynamic, which increases the importance of cross company 
network cooperation projects, in order to support market 
competition (Mourtzis et al., 2013). Production paradigms 
have been changed over the years (Lasi et al., 2014), and the 
last Industrial Revolution, which will guide next transforma-
tions in production processes, has been called Industry 4.0 
– or the Fourth Industrial Revolution (Hermann et al., 2016). 
Digital technologies advances are the basis of Industry 4.0, 
involving resources of Internet and smart objects in modu-
lar production systems, capable of managing manufacturing 
processes (Lasi et al., 2014).

Unlike the previous three industrial revolutions, Industry 
4.0 is being studied before it happens, or while it happens, 
which brings a set of opportunities in both academic and 
enterprise environments (Hermann et al., 2016). Testbeds 
are used to simulate Industry 4.0 production processes, in 
complete industry level as well as specific machines; these 
environments allow evaluating bigger complexity applica-
tions and simulating function conditions, which contribute 
to improve manufacturing as a whole (ABDI, 2017). 

Industry 4.0 is related to Cyber-Physical Systems (CPS) 
(Drath and Horch, 2014). CPS include smart machines, stor-
age systems, and facilities capable of changing information 
and making autonomous decisions, building global networks 
(Kagermann et al., 2013) that connect their different com-
ponents (Brettel et al., 2014). A network is a set of nodes 
related to each other by edges (Newman, 2003). Complex 
networks are networks that have an irregular structure that 
can be changed along the time (Boccaletti et al., 2006), as 
Industry 4.0 networks.

Complex production networks are made of connected 
work units. These units share information and solve tasks in 
an integrated way, with the participation of more than one 
element. This can be seen as cooperation, when a specific 
unit cannot solve a task, but it is solved by a set of connected 
units (Putnik et al., 2012). 

Industry 4.0 allows personalization without price increase 
(Lasi et al., 2014). Even though its networks are not wide-
ly spread, it is possible to see this kind of large production 
network structure, for example, in additive manufacturing 
scenarios (also known as 3D printing manufacturing). Ad-
ditive manufacturing is a way to build components, parts, 
models, prototypes, etc., from 3d-models in a layer-by-layer 
process, which uses different materials, such as plastic, met-
al, and ceramics (Conner, et al. 2014, Thomas and Gilbert, 
2014). Huge additive manufacturing networks composed of 
producers and consumers has been made: 3DHubs.com is 
an example, in which more than 250,000 components are 

made each quarter by 6,000 international suppliers (3D 
Hubs, 2018).

Industry 4.0 has integrated many new manufacturing 
concepts, usually related to technologies, and it can be seen 
“from the lens of collaborative networks”, connecting manu-
facturing systems, products, value chains, etc. It is necessary 
to understand the interactions among Industry 4.0 networks 
to reach effectiveness, agility, and resilience of future sys-
tems (Camarinha-Matos et al., 2017). Based on that, it is 
possible to understand that Industry 4.0 networks can have 
different topological structures, related to their nodes con-
nectivity. Furthermore, the search for work units capable to 
answer and execute a production task can go through dif-
ferent depth levels in the network. This paper aims to check 
how (i) network’s connectivity and (ii) the number of levels 
taken in the search for nodes to contributed with a task exe-
cution affect the total number of complete production tasks. 
In order to achieve this goal, two hypotheses was formulated 
and analyzed based on simulations taken in a computation-
al environment developed. It is expected that this paper’s 
results can be applied in different kinds of large production 
network, in the Industry 4.0 context, such as additive manu-
facturing networks and collaborative networks. 

The paper is organized in 4 sections, including this intro-
duction. Section 2 brings a bibliographic review about the 
main topics of this work. In section 3, the method of the 
work is described. In section 4, the two hypotheses and the 
simulation made in this work are shown. Finally, in section 
5, the results are discussed, and the research is concluded, 
with reference to future works.

2. LITERATURE REVIEW

In this section, concepts related to this paper are dis-
cussed.

Industry 4.0

“Industry 4.0” refers to the Fourth Industrial Revolution. 
It was first used in the Hanover Fair, Germany, in 2011, to 
define the phenomenon that follows the three first industri-
al revolutions (Drath and Horch, 2014), which resulted of (i) 
mechanization, (ii) electricity, and (iii) information technolo-
gy (Kagermann et al., 2013).

Industry 4.0 aims to create smart products, processes, 
and procedures, and its key elements are the smart facto-
ries: plants capable of treating bigger complexities, with less 
interruptions and a more natural human-machine commu-
nication, as in a social network (Kagermann et al., 2013). 
This fourth industrial revolution will deliver better quality 
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in fields such as engineering, management, manufacturing, 
operations, and logistics, with bigger flexibility and robust-
ness; it can lead to self-organizable, optimized supply chains 
based on a set of criteria (Kagermann et al., 2013).

Hermann et al. (2016) cite four components of Industry 
4.0, based on a literature review: (i) Cyber-Physical Systems; 
(ii) Internet of Things; (iii) Internet of Services; and (iv) Smart 
Factories. The CPS are responsible for integrating both real 
and virtual worlds; they are devices with capacity to store 
their state and to make operations. The Internet of Things 
(IOF) treats the connection of ordinary objects, which leads 
to the construction of a large communication network be-
tween devices and human beings (Xia et al., 2012). The 
Internet of Services (IOS) allows offering and demanding 
services on the Internet (Buxmann et al., 2009). Both IOF 
and IOS allow the construction of networks that integrate all 
manufacturing process, leading to the construction of net-
works of Smart Factories, capable of managing big complex-
ities (Kagermann et al., 2013).

The Industry 4.0 structure, therefore, is a big and com-
plex network, built by its different elements, as the Smart 
Factories and CPS. Thus, it is possible to study Industry 4.0’s 
phenomena through analysis of complex network.

Complex networks

Networks represent many structures of society and are 
made of discrete elements, that have connections or in-
teractions with other elements. In order to understand a 
network, it is necessary to understand its elements and its 
structure. Examples of networks are the Internet, social net-
works (on the Internet or not), the interaction of proteins 
and the human brain (Lovász, 2012).

A network structure is defined by the connection of its 
objects; the study of these structures is important, because 
there are many phenomena that occur over them. It is im-
portant to characterize the network’s structure, i. e., “to enu-
merate many of the aspects that summarize the network’s 
structure” (p. 306, translated by the authors), as well as to 
understand network’s properties, because it is possible to ex-
tend behaviors based on this information (Figueiredo, 2011). 

Nowadays, bigger networks have been studied, due to 
better computational capacities available: from networks 
with dozens or hundreds of nodes, today it is possible to an-
alyze networks with thousands or millions of nodes (New-
man, 2003). Networks have been called “complex networks” 
because the “typology and evolution of networks in the real 
world show robust organizational properties, differently 
from random networks” (Metz et al., 2007, p. 3, translated 
by the authors).

Even if they represent different structures of the real 
world (from information systems to biological and social sys-
tems), most of the real networks share topological features, 
as small-world and big clustering coefficient that make them 
different from regular structures, as the random graphs 
(Boccaletti et al., 2006). 

It is necessary to study the processes that generate net-
works in order to generalize results; these processes are 
determined by math models (Figueiredo, 2011). The use of 
graphs, made of nodes and edges, to represent real networks 
are a simplification, due to networks’ changes in proprieties 
over time; but they have been an informative way to repre-
sent the whole system (Boccaletti et al., 2006). Some topo-
logical proprieties, used in this work, are discussed as follow:

• The node degree is the number of edges that are 
related to it, and the average degree of a network 
is the arithmetic average of all its nodes’ degree  
(Figueiredo, 2011);

• A path between two nodes in a graph is a sequence 
of nodes, without repetition, in which there is always 
an edge connecting each pair of nodes on the se-
quence (Figueiredo, 2011). In this work, the number 
of edges between two nodes was called the number 
of levels to go from one to the other.

3. METHODOLOGICAL PROCEDURES

In this paper, two hypotheses were formulated and test-
ed, based on a modeling and simulation study. Modeling is 
the process of building models, which are representations of 
a system (Maria, 1997). According to Maria (1997), a model 
should be as close as possible to the real system, although 
it is a simplification; a model cannot be so complex that it 
makes its understanding and experiment impossible. A mod-
el is a simplified representation of the interactions among 
the parts of a system (Chwif and Medina, 2006).

Simulation aims to predict a system’s behavior over input 
values, based on a set of rules; simulations can have mathe-
matical formulas, but they cannot be summarized in only a 
single equation. Computational simulation is the simulation 
performed in a computer (Chwif and Medina, 2006) and it is 
the simulation used in this paper.

This work followed the steps proposed by Law and Kelton 
(2000) to a simulation study, which are:

• Problem formulation and study plan: problem defi-
nition and study plan was made based on the inves-
tigations exposed in the introduction and literature 
review of this article;
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• Collecting data and defining a model: the model 
definition was based on previous studies. The works 
of Skulj et al. (2014) and Putnik et al. (2015) were 
selected for this definition, which is describe in the 
following sections of this paper;

• Validation: model validation was made with experts, 
as indicated by Law and Kelton (2000);

• Constructing a computer program and verifying it: 
based on the built model, a software was imple-
mented, using the program language Java;

• Making pilot runs: at this moment, controlled simu-
lations were made, in order to get output data that 
can be validated in the following step;

• Validation: the sixth step consists in the analysis of 
the data gathered in the previous one. Due to the 
impossibility to obtain real data for comparison, 
controlled tests were made to check whether input 
changes would result in the expected outputs;

• Design experiments: the experiments with the hy-
potheses were defined in this step and they are de-
scribed in the following sections of this paper;

• Making production run: the simulations about the 
hypotheses were run based on the developed mod-
el, over the implemented software;

• Analyzing output data: this step is also described in 
the following sections of this paper, based on the ob-
tained results;

• Documenting, presenting and implementing results: 
the presentation of the results is indicated in the fol-
lowing sections of this article, as the previous step.

The production network model developed in this paper 
was based on Skulj et al. (2014) and Putnik et al. (2015). 
The network’s nodes represent work units, which can be 
both producers and/or consumers. The edges indicate rela-
tionships between these units: if two nodes are connected, 
they can exchange information and execute a task together. 
Letters (A, B, C, …, Z) are used to represent production (or 
consumption) items. A node has a list of skills, which are a 
set of production items the node is able to produce in order 
to execute a demand. A demand (task) is made up of a set 
of items, and is always directed to a specific node; this node 
can execute the whole task, or just a part, if it has the need-
ed production items in its set of skills. If the node cannot 
execute the whole task, it can send the remaining part to 
its neighbors, i.e., the nodes that are directly connected to 
it. This delegation process can be done recursively, up to a 

predefined limit of levels. Figure 1 shows the visited nodes, 
from A, when the number of levels is 0, 1 or 2.

Figure 1. Nodes of a network visited from A (0, 1 or 2 levels)
Source: authors (2018)

The search for nodes to execute a task is made as in a 
breadth search in a graph, i.e., starting from a specific node 
s, firstly, all nodes directly connected to s are visited. Then, 
this procedure is repeated, taking a new node as a source, 
which has to be a node directly connected to s (Cormen, 
2009). Figure 2 shows a breadth search in a network. 

Figure 2. Breadth search
Font: authors (2018)

4. RESEARCH HYPOTHESES 

Two hypotheses were made to achieve this paper’s goals. 
They were made based on Putnik et al. (2015). In their arti-
cle, the robustness of production networks was checked in 
relation to its size and the size of the existent social connec-
tions. The hypotheses’ elaboration are the seventh step of 
Law and Kelton’s method to a simulation study. The hypoth-
eses are:

• Hypothesis 1 (H1): in an Industry 4.0 network pro-
duction, the number of tasks completely executed 
is related to the network’s average degree. A more 
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connected network could make easy the search for 
nodes with capacity to execute a task. Because of 
this, this network is expected to complete a big num-
ber of demands;

• Hypothesis 2 (H2): in an Industry 4.0 network, the 
number of production tasks completely executed is 
related to the maximum of levels that can be trav-
eled in the search for nodes, and it is affected by the 
network’s average degree. It is expected that, going 
through more levels, more nodes will be reached 
and, then, more tasks can be complete. This behav-
ior can be affected by the network’s average degree, 
which can help to reach a bigger number of nodes 
faster.

Computing simulations were performed to evaluate the 
hypotheses. This corresponds to the eighth step of Law and 
Kelton’s method. To do this, five random scale free networks 
were created with 128.000 nodes each one; their average 
degrees were defined in 2, 4, 8, 16, 32. The five networks 
were created using Pajek software, a computer software “for 
analysis of large networks” (Batagelj and Mrvar, 1998, p. 1). 
Each node in the networks received a set of random skills, 
each one having between 1 and 10 different items. The eval-
uations of the two hypotheses are discussed as follows.

H1 indicates that “in an Industry 4.0 network production, 
the number of tasks completely executed is related to the 
network’s average degree”. To check H1, a simulation was 
run, trying to execute 1000 production tasks in each one 
of the 5 previously generated random networks. The tests 
were repeated 100 times to each network, and the showed 
results refer to the executions’ averages. The maximum 
number of levels to this analysis was defined as 10. The sim-
ulator avoids loops, i.e., one node never is checked more 
than once. Table 1 summarizes the results to H1 executions. 
Figure 3 shows a graph relating the network’s average de-
gree with the number of tasks completely executed.

Table 1. Number of tasks completely run by networks’ average 
degrees

Average 
degree Edges Tasks  

completed Increase*

2 256000 538 -
4 512000 723 34%
8 1024000 847 17%

16 2048000 918 8%
32 4096000 957 4%

* Increase in the number of tasks completely run in comparison with the 
previous network

Source: the authors (2018)

1200
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2 4 8 16 32
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Figure 3. Number of tasks completely run by networks’ average 
degree.

Source: the authors (2018)

For the first hypothesis, results showed an increase in the 
total number of tasks completely run with the increase of 
network’s average degree. The biggest increase in the num-
ber of completely run tasks occurred from the networks 
with average degree 2 to 4: around 34%. The total number 
of tasks completed increased in 78% from the network with 
average degree 2 to the network with average degree 32. 
Based on this data analysis, H1 was confirmed, i.e., net-
work’s connectivity influences the number of completely 
run tasks in an Industry 4.0 production network.

The second hypothesis is: “in an Industry 4.0 network, the 
number of production tasks completely executed is related 
to the maximum number of levels that can be traveled in 
the nodes search, and it is affected by the network’s average 
degree”. To verify this hypothesis, 1000 tasks were simulat-
ed in each network, and the maximum number of levels was 
defined as 2, 3, 4, 5 and 6. Therefore, 25 different scenarios 
were checked, combining the different average degrees with 
the numbers of levels. As in H1, each test was repeated 100 
times, and the results, summarized in tables 2, 3, 4, 5 and 6, 
show the average values.

Table 2. Number of tasks completely run - network with average 
degree 2

Maximum levels Number of tasks 
completed Increase

2 60 -
3 296 393%
4 442 49%
5 505 14%
6 532 5%

Source: the authors (2018)
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Table 3. Number of tasks completely run – 
 network with average degree 4

Maximum levels Number of tasks 
completed Increase

2 137 -
3 534 290%
4 673 26%
5 711 6%
6 718 1%

Source: the authors (2018)

Table 4. Number of tasks completely run – 
 network with average degree 8

Maximum levels Number of tasks 
completed Increase

2 277 -
3 751 171%
4 834 11%
5 844 1%
6 847 < 1%

Source: the authors (2018)

Table 5. Number of tasks completely run – 
 network with average degree 16

Maximum levels Number of tasks 
completed Increase

2 469 -
3 884 88%
4 917 4%
5 918 < 1 %
6 920 < 1 %

Source: the authors (2018)

Table 6. Number of tasks completely run – 
network with average degree 32

Maximum levels Number of tasks 
completed Increase

2 656 -
3 946 44%
4 955 9%
5 957 < 1%
6 957 0%

Source: the authors (2018)

Based on the results analysis, it was noticed that the maxi-
mum level increase raises the total number of tasks completely 
run in almost all scenarios. The only case in which this did not 
occur was in the network with average degree 32, when it was 
changed from 5 to 6 levels. The raise in the degree intensified 
the behavior: networks with a bigger average degree and bigger 
maximum defined level completed a larger number of tasks.

The raise in levels was more intense in networks with 
smaller average degrees. In networks with average degree 

2, the level increase from 2 to 3 led to a raise of 393% in the 
number of tasks completely run. To the networks with aver-
age degrees 4 and 8, respectively, the rise from 2 to 3 levels 
led to increases of 290% and 171% in the number of tasks 
completely run. For the networks with average degrees 16 
and 32, the increase from 2 to 3 levels led to a raise of 88% 
and 44% in the total tasks completely run.

Based on the results, H2 was confirmed only in part, be-
cause in one case there was no change in the number of com-
pletely run tasks with the change of maximum levels defined.

5. CONCLUSION AND FUTURE WORKS

The last step proposed by Law and Kelton (2000) is the 
documentation and presentation of the simulation results. 
Based on the simulations, it is possible to conclude that 
more connected networks are more capable of completing 
production tasks in Industry 4.0 scenarios. In average degree 
2 network, 54% of tasks were completely run, while in the 
network with average degree 32 this value raised to 96%. 
The impact of connectivity increase was not linear: from the 
average degree 2 to 4, the number of tasks totally run was 
raised around 34%; on the other hand, from the average de-
gree 16 to 32, the increase was 4%. This shows a stabilizing 
behavior in the number of tasks completely run with the in-
crease in connectivity (network average degree).

As to the number of levels taken in nodes search, only 
one situation did not lead to an increase of tasks complete-
ly run: in average degree 32 network, the raising from 5 to 
6 levels. This may have happened due to the network high 
connectivity, which may not lead to reach more nodes with 
6 levels than the same search with 5 levels. The number of 
levels had bigger impact in less connected networks; for ex-
ample, in the average degree 2 and 4 networks, when the 
number of levels increased from 2 to 3 levels, the number of 
completely run tasks raised in 323% and 290%, respectively. 

Therefore, based on simulations and results analysis, this 
papers’ goal was reached. Thus, taking an additive manu-
facture scenario with thousands of producers and consum-
ers as a large production network example, it is important 
to have greater average degrees, that is, each node should 
be as connected as possible. Furthermore, it is necessary 
to search as thoroughly as possible in the network, thus in-
creasing the chances of completing a task.

As future works, the construction of a method to choose 
which nodes will participate in task running and the inclu-
sion of restrictions in this process can be cited. One limita-
tion of the research was the simplification of the production 
process in the developed model inherent in any modeling 
and simulation process.
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