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THE MIXED CUSUM-EWMA (MCE) CONTROL CHART AS A NEW ALTERNATIVE 
IN THE MONITORING OF A MANUFACTURING PROCESS

ABSTRACT 
Goal: The objective is to conclude, based on a comparative study, if there is a significant 
difference in sensitivity between the application of MCE and the individual application of 
the CUSUM or EWMA chart, i.e., greater sensitivity particularly for cases of lesser magni-
tude of change. 
Design/Methodology/Approach: These are an applied research and statistical tech-
niques such as statistical control charts are used for monitoring variability. Results: The 
results show that the MCE chart signals a process out of statistical control, while individual 
EWMA and CUSUM charts does not detect any situation out of statistical control for the 
data analyzed. 
Limitations: This article is dedicated to measurable variables and individual analysis of 
quality characteristics, without investing in attribute variables. The MCE chart was applied 
to items that are essential to the productive process development being analysed. 
Practical Implications: The practical implications of this study can contribute to: the cor-
rect choice of more sensitive control charts to detect mainly small changes in the location 
(mean) of processes; provide clear and accurate information about the fundamental pro-
cedures for the implementation of statistical quality control; and encourage the use of this 
quality improvement tool. 
Originality/Value: The MCE control chart is a great differential for the improvement of the 
quality process of the studied company because it goes beyond what CUSUM and EWMA 
control charts can identify in terms of variability.

Keywords: Process Monitoring; Control Chart; Mixed CUSUM-EWMA Chart.
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1. INTRODUCTION

The Statistical Process Control (SPC), in particular, quality 
control techniques, such as control charts, have become in-
creasingly important for the effective systematic monitoring 
of quality characteristics. To achieve quality assurance, a ba-
sic factor in the consumer decision regarding products and 
services, SPC, acts as a set of practical and efficient tools to 
solve problems for achieving stability and improvement in 
the process capacity by reducing variability (Montgomery, 
2013). 

Statistical control charts are commonly employed to get 
stability in SPC. It also ensures products and process quality 
control (Lampreia et al., 2018).

The most popular and important statistical tool for SPC is 
the control chart, which shows when a process changes and 
requires corrective action based on a sequential sample. In 
general, a control chart represents quality characteristics an-
alyzed in several samples (Mingoti et Neves, 2005). A control 
chart enables the systematic reduction of variability in the 
quality characteristic of a product or service represented by 
the monitored variable. Its use consists in determining the 
existence of variations from special causes to remove them 
so that the process can be brought into statistical control 
(Alves, 2003). 

Control charts are classified into two categories according 
to their design structure: memoryless and with memory, or 
time-weighted. Traditional Shewhart charts are the memo-
ryless type once their control structure, which involves the 
statistical plot and additional decision rules, is based only on 
the last observation. The most popular memory-type con-
trol charts, such as CUSUM and EWMA, are designed in such 
a way that their statistical plot uses both past and current 
observations, which makes them more sensitive than She-
whart control charts to small and moderate changes in the 
process parameters of interest. 

The classical memory-type CUSUM and EWMA control 
charts designed by Page (1954) and Roberts (1959), respec-
tively, are considered, according to the literature, as more ef-
ficient than the Shewhart charts for detecting small changes 
in a process. However, with the wide range of control chart 
options available, selecting the chart that best suits a par-
ticular process can be a difficult task. The difficulty in select-
ing increases with the applicability of two different control 
charts for the same data. This is particularly the case when 
using the type of control charts with memory. For example, 
the same data may be analyzed using either the EWMA or 
CUSUM control chart, i.e., Vargas et al. (2004). However, 
the intent and method of application for each memory-type 
chart are completely different. In this case, an alternative 
may be the application of mixed control charts with memory 

that combine the parameters of these two charts, which are 
the subject to be studied topic in this paper.

According to the literature, after the development of the 
classical CUSUM and EWMA control charts, a variety of in-
vestigations involving fine-tuning and modifications for the 
effective monitoring of parameters and improving the quality 
of process outputs was proposed in order to further improve 
the performance of these charts and particularly increase the 
detection abilities of different types of control charts. Some 
researchers, such as Lucas (1982), proposed a combined Sh-
ewhart-CUSUM quality control design for efficient detection 
of large and small changes. Similarly, the use of combined 
Shewhart-EWMA charts, which increases the sensitivity of 
the chart for larger shifts, is recommended by Lucas et Sac-
cucci (1990). Additional decision rule schemes that improve 
the CUSUM control chart performance from small to large 
changes was suggested by Riaz et al. (2011). The mixed EW-
MA-CUSUM (MEC) control chart design that mixes the statis-
tical properties of these two classical memory-type charts in a 
single control structure to improve the monitoring of process 
parameters was introduced by Abbas et al. (2013). An inverse 
version of this mixture, i.e., a new mixed CUSUM-EWMA 
(MCE) chart was suggested by Zaman et al. (2015). In this new 
configuration, the CUSUM statistic serves as an input to the 
EWMA structure, contrary to the MEC chart whose EWMA 
statistic is used as an input to the CUSUM structure. 

MEC and MCE control charts are still under researching in 
literature and can be found in previous studies (Aslam, 2016; 
Zaman et al. 2016, Lu, 2017; Osei-Aning et al., 2017).

The application of this new mixed memory-type control 
chart configuration in a rubber products manufacturing pro-
cess is proposed in order to further improve the sensitivity 
of the MCE chart structure, particularly for changes of lesser 
magnitude of this process. Our work is divided into four sec-
tions: section 2 presents the theoretical framework involving 
the concepts and fundamentals of the two classical memo-
ry-type EWMA and CUSUM control charts and recent mixed 
memory-type MEC and MCE charts, with the combination of 
statistical parameters of these two charts; Section 3 is the 
application of the proposed methodology for the MCE by us-
ing the actual data of a manufacturing process and, finally, 
section 4 presents the final considerations.

2. THEORETICAL FRAMEWORK

Selection and Evaluation of Statistical Process Control 
Chart 

Proper selection of the control chart type in process mon-
itoring is a vital starting point for SPC because an incorrect 
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selection of the chart type can result in many false alarms 
and high monitoring costs that are needless for special caus-
es of the process. Some researchers, such as Lucas et Sac-
cucci (1990) and Hawkins et Olwell (1998) state that EWMA 
and CUSUM memory-type control charts are more efficient 
than Shewhart-type charts. However, in most of the liter-
ature, there is no clear definition in terms of which of the 
two categories of memory-type charts (CUSUM or EWMA) 
or memoryless (Shewhart-type) is more sensitive for signal-
ing a situation when the process is out of control. In addi-
tion, the purpose and method of application for each type 
of memory-type chart are completely different. When and 
how to use a control chart with memory has always been 
problematic both for quality supervisors in production lines 
regarding operational understanding, and SPC analysts re-
garding statistical comparison of performance.

The evaluation of the parameters associated with the 
statistical performance of control charts for process moni-
toring depends on the effectiveness in detection of special 
causes directly related to the choice of control limits, the 
sampling interval, the sample size and the choice of sensi-
tivity rules. An effective measure usually adopted of these 
sensitivity rules to evaluate the statistical performance of a 
control chart is known as the Average Run Length (ARL) (Mo-
raes et al., 2015), which is the average number of samples 
that must be collected until the process indicates an out-of-
control condition (Montgomery, 2013; Costa et al., 2004). 
When the process is under statistical control, ARL0 indicates 
the average number of points required for the occurrence 
of the first false alarm of the control chart. However, when 
the process is out of statistical control, ARL1, called the out-
of-control ARL, indicates the number of samples required to 
detect the occurrence of changes in the quality characteris-
tic under study. In the design of a control chart, it is crucial to 
analyze the ARL behavior with respect to the various change 
amplitudes. This is because ideally, ARL0 should be as large 
as possible, which is an indication that few interruptions 
will be necessary in the process when it is under statistical 
control. Moreover, ideally, ARL1 should be as low as possible, 
since this value directly relates to the time required for the 
detection of a special cause (Abbas et al., 2013).

Random variable can be defined as the quantity of sam-
ples until the first out-of-control signal occurs and its dis-
tribution is called as run length distribution (Abbas et al., 
2013).

The average of this distribution is the ARL, the statistical 
indicator that is mostly used to evaluate and compare con-
trol chart performances. This indicator takes into account 
the values of Type I and Type II errors, i.e., the cost associ-
ated with searching for a nonexistent problem and the cost 
associated with poor quality in the final product from when 
a change occurs until it is detected (Alves et al., 2013). Such 

errors, when not determined correctly, affect the perfor-
mance of control charts and can have negative consequenc-
es for the productivity and quality of production processes 
(Lee et al., 2013).

From a statistical point of view, a good control chart is 
one that, besides having an effective design structure, can 
deal with the more practical aspect of having resistance to 
unusual situations. Thus, as a compromise between the sta-
tistical and practical purposes, the key is to develop a moni-
toring chart that can simultaneously meet both objectives in 
a good capacity (Nazir et al., 2015).

Control Charts for Monitoring the Location of a Process

The best-known statistical control chart, widely used in 
monitoring processes, is Shewhart-type chart, where only 
information about the last point marked on the chart is con-
sidered (Klein, 2000; Abbas et al. 2014).

In some cases, other types of control charts can supple-
ment Shewhart type control chart or replace it and provide 
advantages. This is the case of the classical CUSUM and of 
EWMA memory-type control charts discussed in this paper. 
These charts, unlike the Shewhart-type chart, combine the 
latest information with previous information and thereby 
detect small and moderate changes of process parameters 
with a much lower ARL (Alves et al., 2009).

The main advantage of Shewhart chart in monitoring 
the location and/or dispersion of a quality characteristic is 
to provide a higher sensitivity to detect large changes in a 
process with independent and normally distributed obser-
vations. However, it has a disadvantage that, for each new 
period of time, it takes into account only the current value 
of the observed variable in its statistical plot, disregarding 
the previous values. This reduces the effectiveness of the 
monitoring of small and moderate process changes (Diniz et 
al., 2013).

The main Shewhart-type chart for variable control used in 
monitoring the location of a process is the mean chart, ( X
). For monitoring dispersion, Range charts (R) and Standard 
Deviation charts (S) can be used. Historically, the X  chart 
has been the most widely used when applied individually or 
in conjunction with one of the other charts (R or S) to jointly 
monitor mean and dispersion (Ryan, 2011).

The simplest Shewhart-type control chart is that for indi-
vidual measures, Xi, whose data are in the individual obser-
vations. In this situation, it is impractical to try to group these 
data together in any way with the purpose of using charts of 
the rational subgroups. This chart can be useful to monitor 
the location of a process in two situations: the Xi chart based 
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on known parameter values and the Xi chart based on esti-
mated or unknown parameter values. Suppose that the pa-
rameters of the process mean (μ) and standard deviation (σ) 
are known, the control limits are assigned to μ ± 3σ x  for n=1 
and μ ± 3

Xσ  for n>1 where n
X

σσ = , provided the ob-
servations of the quality characteristic considered to assume 
a normal distribution as an appropriate model and having 
no correlation are reasonable. Just as with statistical meth-
ods in general, the conditions should be checked, with the 
assumption of normality for an Xi chart being critical. How-
ever, if the process parameters for the mean and standard 
deviation are unknown, the respective estimators can be 
easily obtained based on the samples taken from a process 
that is apparently under control. The usual estimator for µ is 
X  which would be calculated from a set of recent historical 
data of the process. Although there is no well-defined choice 
for the μ estimator, this is not the case when deciding how 
to estimate σ. A better approach is to use two evaluators, 
one for the analysis of the historical data set and another to 
monitor the process, i.e., Phase I and Phase II. The reason 
for this recommendation is that one estimator is preferable 
for Phase I while the other is better for Phase II (Ryan, 2011). 
These two estimators are based on the moving range MR = 
|Xi - Xi-1| and the standard deviation σ, respectively. Thus, 
the control limits for the Shewhart-type chart X for individ-
ual measurements are obtained as σ̂3±X , preferably with 

2ˆ MR dσ =  in Phase 1 and 4ˆ cs=σ  in Phase 2, where σ̂  is 
an unbiased estimator of the value of the appropriate con-
trol chart constant d2 (tabulated value, for n=2) or c4  (tabu-
lated value based on the number of observations).

A study on distribution-free Phase II CUSUM Control Chart 
for Joint Monitoring of Location and Scale was presented by 
Chowdhury et al. (2015). Considering the Lepage statistic, 
the authors state a single distribution-free cumulative sum 
chart and denote it by CL-Chart (Cumulative sum-Lepage). 
They conclude that these CL-Charts perform very well in the 
location-scale models, based on practical applications to real 
data, for which this new model was compared with several 
existing cumulative sum charts and moreover with a com-
peting Shewhart-type chart.

Memory-type or Time-weighted Control Charts

Memory-type or time-weighted control charts are appro-
priate alternative tools because they have great sensitivity 
for the rapid detection of small and moderate changes in 
a process, in contrast to traditional Shewhart-type charts 
(Riaz, 2011). The statistics used in the development of these 
charts take into account, in each new time period, not only 
the current value of the observed variable, but also their 
previous values. Thus, they are able to detect subtle changes 
in the mean (or even the variation) of the process, increasing 
monitoring efficiency (Diniz et al., 2013).

In general, the performance of EWMA and CUSUM charts 
are equal and most comparative studies are based on the 
ARL (Montgomery, 2013; Lee et al., 2013).

The usual design structures for control charts with mem-
ory, such as those of classical CUSUM and EWMA charts, 
are appropriate alternative statistical tools adequately de-
veloped to provide greater sensitivity. It is supposed that it 
detects small and moderate changes in the parameters of a 
process more quickly with an average number of samples 
until the emission of a signal (ARL) that is much lower than 
the traditional Shewhart-type control chart (Koshti, 2011; 
Nazir et al. 2013).

Suppose you want to track the evolution of a variable X 
measuring a certain quality characteristic. Successive ob-
servations of this variable are X1, X2,…, Xn. Considering that 
the characteristic X must assume the nominal value µ, the 
values d1 = (X1 - µ), d2 = (X2 - µ), ..., dn = (Xn - µ) correspond to 
the sequence of deviations from the nominal value. If a very 
small change occurs, the evolution of values d1, d2… dn would 
not be effective to detect it. Therefore, it is more efficient 
to develop a graphical representation based on d1, d1 + d2, 
d1 + d2 + d3 …, d1 + d2 + d3 + … +dn-1 + dn, such that, at each 
instant, the historical information is also considered. Thus, a 
small change would accumulate until its detection becomes 
obvious.

Cumulative Sum Control Chart

The classical Cumulative Sum (CUSUM) control chart pro-
posed by Page (1954) is an alternative to the Shewhart-type 
chart for rapid detection of small and moderate changes of 
location and/or dispersion of a process with independent 
and normally distributed observations. There are many ver-
sions of CUSUM control charts; however, the tabular is tradi-
tionally the most used (Khoo; Teh, 2009; Montgomery, 2013). 
This procedure uses the accumulated sum to accumulate de-
viations of each observation from the nominal value µo that 
are above the nominal value with the statistic +

iC , and de-
viations from µo that are below the nominal value with the 
statistic =

iC .

The statistics +
iC  and =

iC , called upper and lower 
one-sided CUSUM, respectively, for monitoring the mean of 
a process, defined initially as 0== −+

ii CC , are determined 
as follows (Hawkins; Olwell, 1998; Woodall; Adams, 1993):

( )KXCC iii −−+= +
−

+
01,0max µ (1)

( )KXCC iii +−+= −
−

−
01,0min µ (2)

where Xi (i=1,2,...) are independent and normally distrib-
uted observations, Xi ~ N(μ0, σ), μ0, the nominal value and σ, 
the standard deviation. If one wants the statistics +

iC  and 
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=
iC  for the sample means, iX  should be used in Equations 

(1) and (2) instead of Xi, and n
X

σσ =  instead of σ in the 
next equations. If the value of +

iC  or =
iC exceeds the deci-

sion interval H = hσ, the process is considered to be out of 
control. A reasonable value for H is five times the standard 
deviation of the process, or H=5σ. The reference value K, in 
Equations (1) and (2), is generally chosen as half of the mag-
nitude of change (in standard deviation units), or K = kσ = 
(δ/2)σ = |μ1 - μ0 | / 2 . The values k (reference value) and h 
(standardized decision interval) are parameters of the CU-
SUM chart. The appropriate selection of the (k, h) pair is very 
important since it greatly influences the ARL performance of 
this chart.

Classical Exponentially Weighted Moving Average 
Control Chart

The classical Exponentially Weighted Moving Average 
(EWMA) control chart proposed by Roberts (1959) is an-
other good alternative to the Shewhart-type control chart 
for the rapid detection of small and moderate changes of 
location and/or dispersion of a process (Wheeler, 2004; 
Abbas et al., 2011). The EWMA chart accumulates succes-
sive information by weighing the samples giving greater 
weight to the most recent observations and less weight to 
the most remote, i.e., the weight given to the samples de-
creases geometrically from the first to the last sample. Its 
performance is very similar to that of the CUSUM chart, 
and both are usually used with individual observations 
(Costa et al., 2004).

The statistic Zi of the EWMA control chart for monitoring 
the mean of a process, which is initially defined as equal to 
the nominal value (Z0=µ0), is determined as follows (Lucas; 
Saccucci, 1990):

1)1( −−+= iii ZXZ ll (3)

where Xi (i=1,2,...) are independent and normally dis-
tributed observations, Xi ~ N(μ0, σ), μ0, the nominal value 
and σ, the standard deviation. Considering the statistic Zi 
for sampling means, 

iX   should be used, instead of Xi in 
Equation (3), and n

X
σσ =  should be used instead of σ 

in Equations (4) and (5). The smoothing constant l is one 
of the chart parameters such that 0< l ≤ 1. When l = 1, the 
EWMA chart is reduced to a Shewhart-type chart, as l = 0, 
Z0 = µ0. Knowing that the observations Xi are independent 
random variables with variance σ2, then the variance of Zi 
is given by:

=2
iZσ [ ]i22 )1(1

2
l

l
lσ −−








−
(4)

Once we have the value of the variance 2
izσ , the non-

fixed EWMA chart control limits depend on i and are usually 
obtained with the asymptotic value l/(2 - l) of the variance. 
As i increases, the variance approximates the asymptotic val-
ue. The EWMA chart control structure, which includes the 
upper control limit (UCL), lower control limit (LCL) and the 
center line (MCL), is defined as:

[ ]iLLCLUCL 2
0 )1(1

2
/ l

l
lσµ −−
−

±= (5)

0µ=MCL (6)

where the factor L (Equation 5) is the extension of the 
control limits, or the number of multiples of the standard 
deviation in which the control limits are far from the center 
line (MCL), Equation (6). Like the CUSUM chart, the EWMA 
chart has two parameters: l determines the reduction of 
weights and L denoting the amplitude range of the control 
limits. Together, (l, L) determine the ARL performance of 
the EWMA chart.

Recently, new research involving improvements and de-
sign changes of memory-type CUSUM and EWMA control 
charts have emerged. Such alternatives, called mixed mem-
ory-type control charts, include a combination of the sta-
tistical parameters of both charts, such as ARL, in a single 
control structure, so as to further improve the performance 
of these charts. The following sections present a detailed de-
scription of some of such current alternatives.

Mixed EWMA-CUSUM Control Chart

A new memory-type control chart structure, called Mixed 
EWMA-CUSUM (MEC), has been proposed by Riaz et al. 
(2011). The heart of this new control chart design is the 
probabilistic combination involving the statistical parame-
ters of the CUSUM (Page, 1954) and EWMA (Roberts, 1959) 
charts in a single structure so that the mixed chart (MEC) is 
better in terms of ARL than the individual use of these two 
charts. The effect of the mixture of statistical parameters in 
this mixed control chart design is, undoubtedly, to further 
increase the sensitivity of the two cited charts, particularly 
for processes having a smaller magnitude of change (Alves 
et al., 2015).

Suppose that we have the sequence X1, X2, X3, …, Xi, inde-
pendent and normally distributed random variables whose 
values are associated with the quality characteristics of in-
terest of a process under control, with a mean μ0 (nominal or 
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target value for the process mean) and standard deviation σ, 
both known. In the mathematical model developed for the 
MEC control chart design, the plot statistic Zi of the EWMA 
chart (Equation 3) is used as an input to the CUSUM chart. 
Thus, the one-sided statistics +

iMEC  (upper) and −
iMEC  

(lower) for the MEC control chart are determined according 
to Equations (7) and (8) (Abbas et al., 2013; Zaman et al., 
2015):

( )ziii KZMECMEC −−+= +
−

+
01,0max µ (7)

( )ziii KZMECMEC +−+= −
−

−
01,0min µ (8)

where the quantities +
iMEC  and −

iMEC  are initially de-
fined to be equal to zero, that is, 0== −+

ii MECMEC . zK , a 
reference value that is variable over time due to the variance 

2
izσ , of the statistic Zi (EWMA) in Equation (4) for the struc-

ture of the MEC chart, is defined by the Equation (9):

      
[ ]i

z
z

z
zizzz kkK 22 )1(1

2
l

l
llσ −−
−

== (9)

In this expression, Kz is equivalent to the constant k in the 
configuration for the classical CUSUM chart. Furthermore, 
these statistics +

iMEC  and −
iMEC  are represented as a 

function of the control limit Hz, Equation (10), which varies 
over time due to the statistic Zi (EWMA) in Equation (4) for 
the MEC chart structure, and is defined as:

 
[ ]i

z
z

z
zizzz hhH 22 )1(1

2
l

l
l

σσ −−
−

== (10)

where hz is a coefficient used to set the default false alarm 
rate, and is equivalent to the constant h in the configuration 
of the classical CUSUM chart. For a fixed value, kz, it is pos-
sible to select the value of hz, i.e., the combination (kz, hz) 
from tables that set ARL0 to the desired level. In general, kz 
assumes half of value of the magnitude of change (in stan-
dard deviation units). Therefore, it is possible to choose, for 
example, kz =0.5 for an ARL0 = 500, since such a value makes 
the CUSUM structure more sensitive to small and moderate 
changes of amplitude (Montgomery, 2013; Hawkins; Olwell, 
1998), for which the charts with memory are really the tar-
get. The control limit - Hz, is selected according to a preset 
ARL0. A large preset ARL0 value provides a greater Hz value 
and vice versa.

Now, the one-sided statistics +
iMEC  and −

iMEC  are plot-
ted against the control limits- Hz. Thus, if the values +

iMEC  
and −

iMEC  are plotted within the control limits, the process 

mean is said to be under control (μ0), or out of control (μ1). 
Therefore, if the process remains under control (at the tar-
get value μ0), the values of the statistics +

iMEC  and −
iMEC  

fluctuate randomly around the zero mean. However, any sta-
tistical value graphically shown above Hz, i.e., that exceeds 
the control limit Hz, indicates an increase in the process 
mean (μ1 > μ0), in other words, a positive displacement or 
one which is above μ0. Conversely, if the mean of the process 
moves to any value (μ1 < μ0), then a negative displacement or 
one below μ0 will occur when the statistic −

iMEC  exceeds 
the control limit, Hz. 

In the design of the MEC control chart, for one-sided sta-
tistics +

iMEC  (upper) and −
iMEC (lower), respectively Equa-

tions (7) and (8), the case is considered of a process whose 
quality characteristic is monitored through individual obser-
vations (n=1), and this situation can be extended to the case 
where the quality characteristic is monitored via rational 
subgroups (n>1). 

For the MEC chart, Equations (7) and (8) in this paper are 
adapted according to Equations (1) and (2) of the Tabular 
CUSUM chart design (Page, 1954; Hawkins; Olwell, 1998; 
Woodall; Adams, 1993). The symmetrical bilateral interval 
decision plan facilitates the visual interpretation of the pos-
itive +

iC  (upper CUSUM) and negative −
iC  (lower CUSUM) 

changes, a situation similar to +
iMEC (upper) and −

iMEC
(lower), for positive and negative changes, respectively.

The assessment of ARL performance in a control chart 
design can be done by different approaches, including Mar-
kov chains, integral equations, Monte Carlo simulations and 
different types of approximations. A simulation algorithm in 
the R language for a detailed study on the calculation and 
performance of the ARL of the MEC control chart to mon-
itor the mean of a normally distributed process was devel-
oped using a Monte Carlo simulation approach (Abbas et al., 
2013).

In this study, the ARL values of the CUSUM and EWMA 
control charts are obtained by a mixed combination of sta-
tistical parameters of both of the charts and are applied to 
the MEC control chart. The results are approximately similar 
to those of Lucas et Saccucci (1990) and Hawkins et Olwell 
(1998), respectively, ensuring the validity of the simulation 
algorithm used in the development of the MEC control 
chart design. In Figures 1 and 2, graphical representations 
(ARL curves) illustrate the ARL performance of the control 
charts used in MEC chart development for some magnitudes 
of change d (in multiples of σ), and some selective choices 
such as (k, h), (l , L), (lz, kz) of MEC chart performance eval-
uation where, for this purpose, the ARL0 values are set only 
at ARL0 = 500.
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Figure 1. ARL performance set at ARL0 = 500 - EWMA (l = 0.25 and 
L = 2.998), CUSUM (k = 0.5 and h = 5.09, Shewhart (3σ) and MEC 

(lz = 0.25 and kz = 0.5)

As shown in Figure 1, the Shewhart-type chart is more 
sensitive to major changes in the process mean. However, 
for small to moderate magnitude changes (δ < 2σ), clas-
sical CUSUM and EWMA charts are more sensitive. The 
main difference between the performance of these charts 
with memory is the sensitivity to detect particularly small 
magnitudes of change on the order up to 0.75σ. For such 
a situation, the Mixed EWMA-CUSUM (MEC) chart showed 
higher sensitivity. Figure 2 and 3 show that, for magnitudes 
of change (δ > 0.75σ), the CUSUM and EWMA charts have 
similar ARL performance and are more sensitive than the 
MEC chart.

Figure 2. ARL performance set at ARL0 = 500 - EWMA  
(l = 0.25, L = 2.998)

Figure 3. ARL performance set at ARL0 = 500 - CUSUM  
(k = 0.5 and h = 5.09) and MEC (lz = 0.25 and kz = 0.5)  

Mixed CUSUM-EWMA (MCE) Control Chart

Zaman et al. (2015) proposed a new design for a control 
chart with memory called Mixed CUSUM-EWMA (MCE), 
whose control structure also involves a mixture of statistical 
characteristics of classical CUSUM (Page, 1954) and EWMA 
(Roberts, 1959) charts, but in reverse order compared with 

the MEC chart. In other words, the statistics +
iC  and −

iC of 
the CUSUM chart are entered as input to the EWMA chart. 
The essence of this recent design for the mixed control chart 
is the combination of the classical CUSUM and EWMA charts 
in a single control structure to optimize the monitoring of 
statistical parameters of a process in order to improve the 
performance of the resulting MCE chart, particularly for pro-
cesses with smaller magnitudes of change. As an alternative 
to the individual application of classical memory-type CU-
SUM and EWMA charts to monitor the location and/or dis-
persion of a process, the purpose of the resulting statistical 
effects of the proposed probabilistic combination in the MCE 
chart, is undoubtedly to increase the sensitivity in terms of 
ARL of these two classical charts. 

As an application alternative to monitor the location of a 
manufacturing process of rubber products, the recent Mixed 
CUSUM-EWMA (MCE) control chart structure with memory 
is under research. This chart is on the mean of individual ob-
servations of the quality characteristic under consideration 
(continuous, independent and normally distributed random 
variables). The use of real data on this mixed system of con-
trol charts is to motivate the practical considerations pro-
posed in this paper.

Let the sequence X1, X2, X3,…  be the quality character-
istic measurements taken, successively, of a process over 
time. This sequence of measurements consists of collected 
samples of size n ≥ 1 that can be individual observations or 
sample means. Let us assume that this sequence of mea-
surements represents independent random variables, and 
that Xi is normally distributed according to Xi ~ N(μ0, σ),  with 
the mean of the process under control μ0 and the standard 
deviation σ, both known. One-sided statistics +

iMCE (upper) 
and −

iMCE  (lower) to detect a change of location in the pro-
cess from μ0 to μ1 according to Zaman et al. (2015), are de-
termined as:

++
−

+ +−= iCiCi CMCEMCE ll 1).1( (11)
−−

−
− +−= iCiCi CMCEMCE ll 1).1( (12)

where +
iC  and −

iC  are the one-sided statistics of the 
classical CUSUM control chart in Equations  (1) and (2) and lc  
is the sensitivity parameter of the MCE control chart, equiv-
alent to l in Equation (3), with 0 < lc  ≤ 1. The initial values 
for the +

iMCE  and −
iMCE  one-sided statistics are set to be 

equal to the target mean of +
iC  and −

iC , respectively, that 
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is, +
0MCE = −

0MCE = Cµ . For a situation that is under control, 
the mean and the variance of the statistics, in Equations 
(11) and (12) vary over time to a specific value of i, and for i

,∞→i it becomes constant. The notation for the mean and 
variance are respectively: 

iCii CMeanCMean µ== −+ )()( (13)
2)()(
iCii CVarianceCVariance σ== −+ (14)

Considering (13) and (14), we define the control limits, 
Equation (15), for the MCE chart as:

[ ]i
C

C

C
CCCii ii

LLCLUCL 2)1(1
2

/ l
l

l
σµ −−

−
±= (15)

where LC is the coefficient of amplitude, equivalent to L in 
Equation (5), and it determines the preset false alarm rate.

Now, the one-sided statistics +
iMCE  and −

iMCE  are plot-
ted against the control limits, iUCL  and iLCL . Thus, if the 
values +

iMCE  and −
iMCE  are plotted within the control 

limits, the mean of the process is said to be under control 
(μ0) or out of control ( 1µ ). Therefore, if the process remains 
under control (in the target value μ0), the values of the statis-
tics +

iMCE  and −
iMCE  fluctuate randomly around the zero 

mean. However, any statistical value +
iMCE  graphically rep-

resented above iUCL , that is, that exceeds the control limit 
iUCL , indicates an increase in the process mean ( 1µ > 0µ ) 

and thus a positive displacement or one which is above 0µ
. Conversely, if the mean of the process moves to any value 
( 1µ < 0µ ), then a negative displacement or one below 0µ  
will occur when the statistic −

iMEC  exceeds the control limit 
iLCL .

In the design of the MCE control chart, for one-sided sta-
tistics +

iMCE  and −
iMCE , Equations (11) and (12), it is con-

sidered the case of a process whose quality characteristic is 
monitored through individual observations (n=1), which can 
be easily extended to the case where the quality character-
istic is monitored via rational subgroups (n>1). To do this in 
the equations, one can simply replace Xi by iX  (sampling or 
subgroup mean) and σ by n

X
σσ =  (standard deviation 

of the subgroup means).

The assessment of ARL performance in a control chart de-
sign follows different approaches, including Markov chains, 
integral equations, Monte Carlo simulations and different 
approaches. Using the Monte Carlo simulation approach, 
Zaman et al. (2015) developed a simulation algorithm in the 
Matlab environment for a detailed study on the calculation 

and performance of the ARL of the MCE control chart to 
monitor the mean of a normally distributed process. 

In this study, the ARL values of the classical CUSUM and 
EWMA control charts are obtained by a mixed combination 
of statistical parameters of both charts and are applied to 
the MCE control chart. The results are approximately similar 
to those of Lucas et Saccucci (1990), and Hawkins et Olwell 
(1998) respectively, ensuring the validity of the simulation 
algorithm used in the development of the MCE control chart 
design. In Figures 4, 5 and 6, graphical representations (ARL 
curves) illustrate the ARL performance of the control charts 
used in the MCE chart development for some magnitudes of 
change d (in multiples of σ), and of some selective choices, 
such as (k, h), (l, L), (lz, kz) of the MCE chart performance 
evaluation, where, for this purpose, the ARL0 values are set 
only at ARL0 = 500.

Figure 4.  ARL performance set at ARL0 = 500 - EWMA  
(l = 0.25 and L = 2.998), CUSUM (k = 0.5 and h = 5.09),  

Shewhart (3σ) and MCE (lc = 0.25, kz = 0.5).

As shown in Figure 4, the Shewhart-type chart is more 
sensitive to major changes in the process mean. However, 
for small to moderate magnitudes of change, (δ < 2σ), the 
classical memory-type charts are more sensitive. For other 
magnitudes of change, (δ < 1σ), the MCE and CUSUM charts 
show a similar ARL, but are more sensitive than the EWMA 
chart.

Figures 5 and 6 show that classical CUSUM and EWMA 
charts for magnitudes of change (δ < 1σ) have similar ARL 
performance and are more sensitive than the MCE chart.

It can be observed that the Mixed CUSUM-EWMA (MCE) 
control chart has greater sensitivity than the Mixed EW-
MA-CUSUM (MEC) control chart for small changes in the 
mean of the process on the order up to 0.62σ. However, for 
magnitudes of change (d > 0.62σ) it is less sensitive than the 
MEC chart.
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Figure 5. ARL performance set at ARL0 = 500  -  EWMA  
(l = 0.25 and L = 2.998)

Figure 6. ARL performance set at ARL0 = 500  -  CUSUM 
( k=0.5 and h = 5.09) and MCE (lc = 0.25, kz = 0.5). 

Furthermore, to complement recent design proposals in-
volving mixed control charts with memory, namely MEC (Ab-
bas et al., 2013) and MCE (Zaman et al., 2015), a graphical 
representation (ARL curve) illustrates the ARL performance. 

Some magnitudes of change, δ (in multiples of σ) and 
some selective choices of parameters, such as lz and kz 
(MEC), lC and kz (MCE) were stated. For this purpose, the 
values were set at ARL0 = 500, as it is shown in Figure 7.

Figure 7. ARL performance set at ARL0=500  -  MEC (lz = 0.25, kz= 
0.5) and MCE (lc = 0.25 and kz = 0.5)

Examining the graphical representations (ARL curves) of 
different control chart designs being studied, it was found 

that the ARL curves of MEC and MCE mixed charts with 
memory (Figures 1, 2, 3, 4, 5 and 6) are located on the lower 
side, showing evidence for increased sensitivity compared 
to other charts. For small values of δ, the difference be-
tween the ARL of the MEC and MCE charts is larger, while 
for moderate values of δ, the difference almost disappears. 

For larger values of δ, the ARL curves of the MEC and 
MCE charts are located above the ARL curves of the other 
investigated charts, showing the poor performance of MEC 
and MCE charts for larger displacements. In short, we can 
deduce that, in general, recent MEC and MCE chart designs 
with memory are good at detecting small and moderate 
changes, while for larger changes their performance is lower 
when compared to other control charts.

Research Methodology

This study is characterized as an applied research (Gil, 
2010; Edmmonds et Kennedy, 2013), because it contributes 
to practical purposes, trying to solve problems or needs that 
exist in the real world. In other words, this research provides 
a comparative study to analyze the differences in terms of 
sensitivity between the MCE and the individual CUSUM or 
EWMA control charts. This research has a quantitative ap-
proach because, in order to reach the proposed objective, 
the results are analyzed using statistical control charts. Al-
gorithms in R software (R Core Team, 2018) were developed 
for the creation of MCE and MEC control charts. Shewart, 
CUSUM and EWMA control charts were created using the R 
package qcc (Scrucca, 2004).

3. APPLICATION OF MIXED CUSUM-EWMA  
CONTROL CHARTS

The Mixed CUSUM-EWMA chart will be performed, con-
sidering data set of a rubber products manufacturing pro-
cess of an industry leader in rubber technology, which is 
implemented at the northern region of the state of Santa 
Catarina.

The quality characteristic in this manufacturing process is 
the hardness of the band (Xi) with a nominal value of ShoreA, 
which is monitored daily through individual observations. 
The seed compacting and terrain leveling bands in the com-
pany’s agricultural line of products are rubber components 
similar to a tire, that are mounted on a rim and coupled to 
an agricultural machine. Their function is to make a uniform 
groove in the soil, compressing and sowing simultaneous-
ly. The major property that is required for this purpose is 
abrasion resistance. The monitoring of the hardness of this 
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rubber component is necessary so that the flexibility of the 
rubber can be ensured in the different product applications 
that require specific hardness.

To illustrate the systematic development of the Mixed 
CUSUM-EWMA (MCE) control chart, attending the meth-
odology proposed by Zaman et al. (2015) and the classical 
CUSUM and EWMA charts, an algorithm was designed (Fig-
ure 8). This algorithm, considers that the data set, generated 
from the information of the manufacturing process under 
study, behaves according to the normal distribution and to 
the absence of autocorrelation. The statistical analysis of 
this manufacturing process is obtained from 30 samples of 
size n = 1. The first seven (7) samples of this process behaved 
according to a normal distribution with a mean of μ = 70 
equivalent to the nominal value and standard deviation σ = 
1, i.e., N (70,1), and the 23 remaining samples had a change 
of 0,5σ in the mean, or N (70.5,1).

Selected for the change in the mean of this process, with 
d = 0.5σ capable of ensuring a desired fixed value of ARL0 = 
500, the statistical parameters are: k = 0.5 and h = 5.09 for 
the classical CUSUM chart (Hawkins; Olwell, 1998); l = 0.25 
and L = 2.998 for the classical EWMA chart (Lucas; Saccucci, 
1990); lz = 0.25 and kz = 0.5 for the MEC chart (Abbas et al., 
2013), and lC = 0.25 and kz = 0.5 for the MCE chart (Zaman 
et al., 2015).

Figures 8, 9, 10, and 11 show a graphical representation 
of the MCE, MEC, EWMA and CUSUM charts with memory 
and the Figure 10 shows the Shewhart-type chart.
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Figura 8. MCE Chart generated from the manufacturing process 
data - Quality characteristic: Hardness of the band (in ShoreA)

The results of the application (Figure 8) show that, for 
the current data, it is evident that there are points outside 
the control limits in five samples (26, 27, 28, 29, and 30) in 
the MCE chart, and four samples (27, 28, 29, and 30) in the 
MEC chart (Figure 9). However, it shows that separate ap-

plications of the EWMA (Figure 10), CUSUM (Figure 11) and 
Shewhart type (3σ) (Figure 12) control charts cannot detect 
any situation out of control for the dataset provided.
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Figure 9. MEC Chart generated from the manufacturing process 
data

This emphasizes the superiority of mixed MEC and MCE 
charts with memory, especially for small magnitudes of 
change in the location (mean) of a process.
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Figure 10. EWMA Chart generated from the manufacturing 
process data
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Figure 12. Shewhart Chart for process data

In addition, by interpretation of Figure 8, it is also clear 
that the MCE chart is more sensitive than the MEC chart 
specifically for this process whose magnitude of change in 
the mean is located on the change interval where MCE has 
the greatest sensitivity. This is exactly in accordance with 
the conclusions presented on the ARL performance of these 
charts in Figure 7 of the previous section.

4. FINAL CONSIDERATIONS AND 
RECOMMENDATIONS

The recent Mixed CUSUM-EWMA (MCE) control chart de-
sign proposed in this paper as an application alternative for 
the monitoring of manufacturing processes is a performance 
improvement procedure for control charts with memory 

whose statistics +
iC  and −

iC of the CUSUM chart that monitor 
location (mean) of a normally distributed process are entered 
as input to the EWMA chart. The essence of the new design 
is the combination of structures of the classical CUSUM and 
EWMA charts in a single control structure. It aims to optimize 
the monitoring of statistical parameters of a process so that 
the resulting mixed chart (MCE) is better in terms of ARL per-
formance than the individual use of these two classical charts: 
it means greater sensitivity particularly for processes with a 
smaller magnitude of change.

In this study, the application of the recent MCE control 
chart design to the real data set of a rubber products manu-
facturing process was very important. It was possible to verify 
that the theoretical foundations of this new control structure 
are of easy transfer to a practical situation. Two competing 
systems of control chart design from two extremes, i.e., the 
most representative control charts in the literature, such as 
the Shewhart-type chart (for large magnitudes of change) 
and CUSUM, EWMA and MEC charts with memory (for small 
and moderate magnitudes of change), were compared. These 

charts have been developed for the same set of data from this 
manufacturing process and for the same value of ARL0 = 500 
as shown in the graphical representations (Figure 8), whose 
differences in the detection abilities of these charts convey 
the message quite efficiently for the purpose of this study.

The statistical analysis has shown that the mixed MEC 
and MCE control charts with memory are significantly more 
sensitive primarily to small changes and provide a very ef-
fective structure compared to other charts already studied. 
The MCE chart showed superior performance compared to 
the MEC chart specifically for the application of this process 
whose magnitude of change in the mean is located in the 
change interval where the MCE chart has greater sensitivity. 
Furthermore, the MCE chart is an efficient competitor for the 
traditional Shewhart-type chart for different values of l and d 
parameters. The results of the application (Figure 6) indicate 
that, for the current data, it is evident that there are points 
outside the control limits in the MCE (five points) and MEC 
(four points) control charts and thus the separate application 
of EWMA and CUSUM charts fails to detect any situation out 
of statistical control for the data set provided. This means that 
it has higher sensitivity, that is, lower ARL, for the change size 
0.5σ in the location (mean) of the process.

The use of control charts for monitoring quality character-
istics of a process that has particularly small variations in the 
location and/or dispersion of interest has advantages, con-
sidering both the statistical and the economic aspects. From 
the statistical points of view, there may be a reduction in the 
number of samples until the chart signals the occurrence of a 
special cause. From the economical points of view there may 
be a reduction in costs, related to the optimization of param-
eters that include statistical aspects such as minimizing false 
alarms. This optimization of statistical parameters from the 
viewpoint of monitoring processes with smaller magnitudes 
of change and with minimal ARL via mixed control charts with 
memory can be an excellent alternative in practical situations, 
such as very capable processes, processes that are difficult to 
adjust or processes whose adjustment cost is high. In these 
situations, it is essential to proper select a control chart with 
greater sensitivity and lower false alarm rates by optimizing 
parameters of statistical monitoring.

Recent mixed MEC and MCE control chart structures with 
memory are not substitutable for classical CUSUM and EWMA 
control charts with memory, since they are suitable for mon-
itoring processes specifically with a smaller magnitude of 
change (d ≤ 0.75σ). However, it can act as a complement to 
these charts in this change interval, assisting in the optimiza-
tion of the statistical monitoring parameters for continuous 
process improvement aimed at achieving optimal stability lev-
els and therefore better quality of goods.
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Practical Implications

The contribution of this study on the application of the 
mixed MCE control chart with memory in the statistical anal-
ysis of different processes with small magnitudes of change, 
as well as a comparative study of the performance with the 
charts most often used and available in the literature, can 
help to: i. contribute to the correct choice of more sensitive 
control charts to detect mainly small changes in the location 
(mean) of processes that operate with less variability; ii. pro-
vide clear and accurate information about the fundamen-
tal procedures for the implementation of statistical quality 
control; iii. encourage the use of this quality improvement 
tool, which involves reducing the variability of processes, re-
sulting in a gain for the company by improving quality and 
productivity and reducing costs by continuing the decrease 
of process variability, achieved with the implementation of 
this chart.

Regarding its practical use, since the tool has a sophisti-
cated theoretical basis (statistics), it is not always easy to be 
applied in the factory floor. Perhaps this tool is more suitable 
for an Industry 4.0 environment, since data gathering and 
processing can be automated.

Future works

As a recommendation for future research, the implemen-
tation of recent mixed MCE and MEC charts with memory in 
scenarios with underlying non-normal distributions involving a 
comparative study with other robust control structures are sug-
gested. In addition, it would be interesting to ascertain whether 
this study can be extended in order to monitor the dispersion 
parameter, as well as for multivariable control structures.
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