
Brazilian Journal of Operations & Production Management 15 (2018), pp 44-53

ABEPRO 
DOI: 10.14488/BJOPM.2018.v15.n1.a17

OPTIMIZATION USING EVOLUTIONARY METAHEURISTIC TECHNIQUES: A BRIEF REVIEW

ABSTRACT
Optimization is necessary for finding appropriate solutions to a range of real 

life problems. Evolutionary-approach-based meta-heuristics have gained prominence in 
recent years for solving Multi Objective Optimization Problems (MOOP). Multi Objective 
Evolutionary Approaches (MOEA) has substantial success across a variety of real-world 
engineering applications. The present paper attempts to provide a general overview of a 
few selected algorithms, including genetic algorithms, ant colony optimization, particle 
swarm optimization, and simulated annealing techniques. Additionally, the review is ex-
tended to present differential evolution and teaching-learning-based optimization. Few 
applications of the said algorithms are also presented. This review intends to serve as a 
reference for further work in this domain.

Keywords: Optimization; Evolutionary algorithms; Meta-heuristic techniques; Applica-
tions.

Aparna Chaparala
chaparala_aparna@yahoo.com
Dept of CSE, RVR&JC College of 
Engineering (A), Guntur, AP

Radhika Sajja
sajjar99@yahoo.com
Dept of ME, RVR&JC College of 
Engineering (A), Guntur, AP



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53

DOI: 10.14488/BJOPM.2018.v15.n1.a17

45

1. INTRODUCTION

Automation in manufacturing industry has been witness-
ing the rapid applications of Computational Intelligence (CI) 
(Mackworth et Goebel, 1998) for a decade. The growing 
complexity of computer programs, availability, increased 
speed of computations, and their ever-decreasing costs have 
already manifested a momentous impact on CI. Amongst 
the computational paradigms, Evolutionary Computation 
(EC) (Kicinger et al., 2005) is currently apperceived all over. 
Unlike the static models of hard computing, which aim at 
identifying the properties of the problem being solved, the 
EC comprises a set of soft-computing paradigms (Schwefel, 
1977). The word paradigm, here, should be understood as an 
algorithm that underlines the computational procedure to 
find an optimal solution to any given problem. Objectives of 
optimization implicitly include reducing computational time 
and complexity. For this very reason, competing methods 
of optimization have grown over the years. However, over 
time, each method—traditional or modern—has found spe-
cific applications. Evolutionary computational methods are 
metaheuristics that are able to search large regions of the 
solution’s space without being trapped in local optima.

The single-criterion optimization problem has a single 
optimization solution with a single objective function. In a 
multi-criterion optimization firm, there is more than one 
objective function, each of which may have an uncooper-
ative self-optimal decision. Multi-objective Optimization 
Problems (MOPs) are the crucial areas in science and en-
gineering. The complexity of MOPs depends on the size of 
the problem to be solved, i.e. the complexity is significantly 
affected by the number of objective functions and size of the 
search space (Jain et al., 1999) . Figure 1 depicts the broad 

classification of MOP. 

In general, all CI algorithms developed for optimization 
can be categorized as deterministic or stochastic. The former 
type use gradient techniques and can be more appropriate-
ly used in solving unimodal problems. The later can further 
be classified as heuristic and meta-heuristic models. The 
difficulty in terms of optimization of engineering problems 
has given way to the development of an important heuris-
tic search algorithmic group, namely, the Evolutionary Algo-
rithm group. Meta-heuristics techniques comprise a variety 
of methods including optimization paradigms that are based 
on evolutionary mechanisms, such as biological genetics and 
natural selections. 

As indicted by Rao et al. (Rao et al., 2011) optimization 
of large scale problems is often associated with many dif-
ficulties, such as multimodality, dimensionality and differ-
entiability. Traditional techniques as linear programming, 
dynamic programming, etc. generally fail to solve such large 
scale problems, especially with non-linear objective func-
tions. As most of these require gradient information, it is not 
possible to solve non-differentiable functions with the help 
of such techniques. In addition, the following limitations are 
observed in traditional optimization techniques:

• Traditional optimization techniques start with a sin-
gle point.

• The convergence to an optimal solution depends on 
the chosen initial random solution. 

• The results tend to stick with local optima.

Figure 1. Taxonomy of MOPs

Start



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53
DOI: 10.14488/BJOPM.2018.v15.n1.a17

46

• Are not efficient when practical search space is too 
large and follow a deterministic rule.

• Are not efficient in handling the multi-objective 
functions.

• Optimal solutions obtained are applicable to prob-
lems of very small size.

• Require excessive computation time and are not 
practical for use on a daily basis.

• Also, modeling the techniques is a difficult task. 

These limitations urge the researchers to implement 
metaheuristic techniques in application domains. Schedul-
ing problems are proved to be NP-hard types of problems 
and are not easily or exactly solved for large sizes. The ap-
plication of metaheuristics technique to solve such NP hard 
problems needs attention. A futile effort that this paper will 
not pursue is to overstate the capabilities of the optimiza-
tion methods discussed herein. Rather, the objective is to 
present how population-based meta-heuristic techniques 
work and indicate their applications. This paper goes on to 
present, in the following sections, genetic algorithms, ant 
colony optimization, particle swarm optimization, simulat-
ed annealing, differential evolution, and teaching-learn-
ing-based optimization, and the conclusion.

2. META-HEURISTIC OPTIMIZATION

A meta-heuristic is described as an iterative master pro-
cess that guides and modifies the operations of subordinate 
heuristics to efficiently produce high quality solutions (Os-
man et Laporte, 1996). It may manipulate a complete or 
incomplete single or a collection of solutions for every iter-

ation. The subordinate heuristics may be high or low level 
procedures, or a simple local search or just a construction 
method. The meta-heuristics are not designed specifical-
ly for a particular problem, but are considered general ap-
proaches that can be tuned for any problem. 

While solving optimization problems, single-solu-
tion-based metaheuristics improves a single solution in 
different domains. They could be viewed as walk-through 
neighborhoods or search trajectories through the search 
space of the problem. The walks are performed by iterative 
dealings that move from the present answer to a different 
one within the search area. Population-based metaheuris-
tics (Ghosha et al., 2011) share the same concepts and are 
viewed as an iterative improvement in a population of solu-
tions. First, the population is initialized. Then, a new popu-
lation of solutions is generated. It is followed by generation 
for a replacement population of solutions. Finally, this new 
population is built-in into the present one using some selec-
tion procedures. The search method is stopped once a given 
condition is fulfilled. Figure 2 provides the taxonomy frame-
works of multi-objective metaheuristics.

Metaheuristics techniques comprise a variety of methods 
including optimization paradigms that are based on evolu-
tionary mechanisms, such as biological genetics and natu-
ral selections. A metaheuristic is described as an iterative 
master process that guides and modifies the operations of 
subordinate heuristics to efficiently produce high quality 
solutions. It may manipulate a complete or incomplete sin-
gle or a collection of solutions for every iteration. The sub-
ordinate heuristics may be high or low level procedures, or a 
simple local search or just a construction method. The meta-
heuristics that are not designed specifically for a particular 
problem but are considered general approaches that can be 
tuned for any problem.

Figure 2. Taxonomy frameworks of meta-heuristics



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53

DOI: 10.14488/BJOPM.2018.v15.n1.a17

47

While these methods provide many characteristics that 
make it the method of choice for the researchers in problem 
domain, the most important reasons are: the paradigms use 
direct ‘fitness’ information instead of functional derivatives 
and use probabilistic, rather than deterministic transition 
rules. This overcomes the problem of getting stuck in local 
optima prevalent with deterministic rules. There are several 
possible classifications for metaheuristics; however, one is 
commonly used in single solution approaches and popula-
tion-based approaches. Single solution methods are Basic 
Local Search, Tabu Search, Simulated Annealing, Variable 
Neighborhood search, and others. Population-based meth-
ods include Genetic algorithm, Particle swarm optimization, 
Ant colony optimization, Scatter search, Memetic algorithm 
etc.

2.1 GENETIC ALGORITHM (GA)

David Goldberg (Goldberg, 1989) defined GA as: Genet-
ic algorithms are the search algorithms based on the me-
chanics of natural selection and natural genetics. GA com-
bines the survival of fitness among the string structure with 
structured, yet randomized information exchanges to form a 
search algorithm with some of the innovative flair of human 
search. 

Genetic and Darwinian inheritance strive for surviv-
al. Each cell of every organism of a given species carries a 
certain number of chromosomes. Chromosomes are made 
of units of genes that are arranged in a linear succession. 
Every gene controls the inheritance of one or several char-
acters. Genes of certain characters are located at certain 
places of the chromosome that are called string positions. 
Each chromosome would represent a potential solution to a 
problem. An evaluation process run on a population of chro-
mosomes corresponds to a search through a space of poten-
tial solutions. Such a search requires balancing two objec-
tives, namely, Exploiting the best solution and Exploring the 
search space. The steps of genetic algorithm are described 
below and the flowchart is shown in Figure 3.

Step 1 :  Generate random population of n chromo-
somes.

Step 2 :  Evaluate the fitness f(x) of each chromosome x 
in the population.

Step 3 :  Create a new population by repeating follow-
ing steps until the new population is complete.

Step 4 :  Select two parent chromosomes from a popu-
lation according to the fitness.

Step 5 :  With a crossover probability, crossover the 

parents to form a new offspring (Children). If no crossover 
was performed, offspring is an exact copy of parents.

Step 6 :  With a mutation probability, mutate new off-
spring at each position in chromosome.

Step 7 :  Place new offspring in a new population.

Step 8 :  Use new generated population for a further 
run of algorithm.

Step 9 :  If the end condition is satisfied, stop and return 
the best solution in current population and go to step 2.

Figure 3.  Flowchart for genetic algorithm

2.2 SIMULATED ANNEALING ALGORITHM (SA)

Kalyanmoy (2002) defined SA algorithm as the method 
that resembles the cooling process of molten metals through 
annealing. At high temperatures, the atoms in the molten 
metal can move freely with respect to each other; however, 
as the temperature is reduced, the movement of atoms gets 
restricted. The atoms start to get ordered and finally form 
crystals having the minimum possible energy. Nonetheless, 
the formation of the crystal depends on the cooling rate. If 
the temperature is reduced at a faster rate, the crystalline 
state may not be achieved at all; instead, the system may 



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53
DOI: 10.14488/BJOPM.2018.v15.n1.a17

48

end up in a polycrystalline state, which may have a higher 
energy state than the crystalline state. Therefore, to achieve 
the absolute minimum state, the temperature needs to be 
reduced at a slow rate. The process of slow cooling is known 
as annealing in metallurgical parlance. SA simulates this pro-
cess of slow cooling of molten metal to achieve the mini-
mum function value in a minimization problem. The cool-
ing phenomenon is simulated by controlling a temperature 
as a parameter introduced with the concept of the Boltz-
mann probability distribution. According to the Boltzmann 
probability distribution, a system in thermal equilibrium at 
a temperature T has its energy distributed probabilistically, 
according to the equation (1).

(1)

where k is the Boltzmann constant. This expression suggests 
that a system at a high temperature has almost uniform 
probability of being at any energy state; however, at a low 
temperature it has a small probability of being at a high en-
ergy state. Therefore, by controlling the temperature T and 
assuming that the search process follows the Boltzmann 
probability distribution, the convergence of an algorithm is 
controlled using the metropolis algorithm.

At any instant, the current point is x(t) and the function 
value at that point is E(t) = f(x(t)). Using the metropolis al-
gorithm, the probability of the next point being at x(t+1) 
depends on the difference in the function values at these 
two points or on DE=E(t+1)-E(t) and is calculated using the 
Boltzmann probability distribution equation (2).

(2)

If , this probability is one and the point x(t+1) is 
always accepted. In the function minimization context, this 
makes sense because if the function value at x(t+1) is better 
than that at x(t), the point x(t+1) must be accepted. When 
DE> 0, it implies that the function value at x(t+1) is worse 
than that at x(t). According to the metropolis algorithm, 
there is some finite probability of selecting the point x(t+1) 
even though it is a worse than the point x(t). However, this 
probability is not the same in all situations. The probability 
depends on the relative magnitude of DE and T values. If the 
parameter T is large, this probability is more or less high for 
points with largely disparate function values. Thus, any point 
is almost acceptable for a large value of T. For small values 
of T, the points with only small deviation in function value 
are accepted. The steps of SA algorithm are described below 
and the flowchart is shown in Figure 4.

Figure 4. Flowchart for SA algorithm

Step 1 : Choose an initial point x(0), a termination criterion ε. 
Set T as a sufficiently high value, number of iterations to be 
performed at a particular temperature n and set t=0.

Step 2 :  Calculate a neighboring point x(t+1)=N(x(t)). Usually, a 
random point in the neighborhood is created.

Step 3 :  If DE = E(x(t+1))- E(x(t)) < 0, set t = t +1; Else create a 
random number (r) in the range (0,1). If r ≤ exp(-DE/kT), set t = t + 
1; Else goto step 2.

Step 4 :  If (x(t+1)- x(t)) < ε and T is small, Terminate; Else goto 
Step 2.

2.3 ANT COLONY OPTIMIZATION ALGORITHM (ACO)

Ant algorithms were proposed by Dorigo and Gambardel-
la (1997) as a multi-agent approach to different combina-

torial optimization problems. The ant system is a new kind 
of co-operative search algorithm inspired by the behavior of 
colonies of real ants. The blind ants are able to find astonish-
ing good solutions to the shortest path problems between 
food sources and home colony. The medium used to commu-
nicate information among individuals regarding paths, and 
decide where to go, was the pheromone trials. A moving ant 
lays some pheromone on the moving path, thus marking the 
path by the substance. While an isolated ant moves essen-
tially at random, it can encounter a previously laid trail and 
decide with high probability to follow it, and also reinforcing 
the trail with its own pheromone. The collective behavior 



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53

DOI: 10.14488/BJOPM.2018.v15.n1.a17

49

that emerges in a form of autocatalytic behavior, where the 
more the ants following a trail, the more attractive that trail 
becomes for being followed. There is a path along that ants 
are walking from nest to the food source and vice versa. If a 
sudden obstacle appears and the path is cut off, the choice 
is influenced by the intensity of the pheromone trails left by 
proceeding ants. On the shorter path more pheromone is 
laid down.

The ant colony optimization algorithm can be applied for 
the continuous function optimization algorithm. Hence, the 
domain has to be divided into a specific number of R ran-
domly distributed regions. These regions are indeed the trial 
solutions and act as local stations for the ants to move and 
explore. The fitness of these regions are first evaluated and 
sorted on the basis of fitness. A population of ants totally 
explores these regions; the updating of the regions is done 
locally and globally with the local search and global search 
mechanism respectively.  The steps of an ACO algorithm 
are described below and the flowchart is shown in Figure 5.

Figure 5. Flowchart for an ACO algorithm

Step 1 :  Fix the evaporation rate and number of runs

Step 2 :  While (number of runs is less than required)

Step 3 :  Initialize pheromone values.

Step 4 :  Call random number generation function

Step 5 :  Generate group of ants with different paths.

Step 6 :  Call the function for calculating the objective 
function

Step 7 :  Sort the objective function values in ascending 
order

Step 8 :  For best sequences, update pheromone level

Step 9 :  Repeat steps 4,5,6,7 and 8 till obtaining required 
number of runs

Step 10 :  Print the best sequences and the objective func-
tion value.

Step 11 :  Change evaporation rate and number of runs for 
next trail.

2.4 PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO)

A swarm of individuals exploring a large solution space 
can benefit from sharing the experiences gained during the 
search with the other individuals in the population. This 
social behavior has inspired the development of Particle 
Swarm Optimization. PSO is an evolutionary computation 
technique developed by Kennedy and Eberhart in 1995. 
Similar to Genetic algorithm (GA), PSO is a population-based 
optimization tool, has fitness values to evaluate the popu-
lation, and update the population for the optimum with 
random techniques. However, unlike GA, PSO has no evo-
lution operators such as crossover and mutation (Kennedy 
et Ebehart, 1995). In PSO, particles update themselves with 
the initial velocity. In this algorithm, the individuals are not 
selected to survive or die in each generation. Instead all the 
individuals learn from the others and adapt themselves by 
trying to imitate the behavior of the fittest individuals. The 
PSO methods adhere to the basic principles of swarm intelli-
gence like proximity, quality, diverse response, stability, and 
adaptability. The steps of PSO algorithm are described be-
low and the flowchart is shown in Figure 6

Step 1 :  Initialize a population of ‘n’ particles randomly

Step 2 :  Calculate fitness value for each particle. If the fit-
ness value is better than the best fitness value (pbest) in his-
tory, then set current value as the new pbest.

Step 3 :  Choose particle with the best fitness value of all the 
particles at the gbest.

Step 4 :  For each particle, calculate particle velocity accor-
ding to the equation (3) and equation (2.4).

 v[] = v[] + c1× rand() × (pbest[] - present[]) + c2 × 
rand() × (gbest[] - present[])                   (3)

 present[] = present[] +v[]         (4)

where  v[] is the particle velocity

 present[] is the current particle (solution) 



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53
DOI: 10.14488/BJOPM.2018.v15.n1.a17

50

 pbest[] and gbest[] are defined as stated before

 rand() is a random number between 0 and 1.

 c1, c2 are learning factors. Usually c1 equals to c2 and 
ranges from   0 to 4.

Step 5: Particle velocities on each dimension are 
clamped to a maximum velocity Vmax. If the sum of acceler-
ation would cause the velocity on that dimension to exceed 
Vmax (specified by the user), the velocity on the dimension is 
limited to Vmax.

Figure 6. Flowchart for PSO algorithm

2.5 DIFFERENTIAL EVOLUTION ALGORITHM (DE)

A simple, yet powerful, population-based stochastic 
search technique, Differential Evolution (DE) is first de-
scribed by Price and Storn (1995) in the ICSI technical report. 
Since its invention, DE has been applied with high success 
on many numerical optimization problems (Lin et al., 2004; 
Cheng et Hwang, 2001). Due to its simplicity, ease in imple-
mentation and quick convergence, the DE algorithm has 
gained much attention and a wide range of successful ap-
plications (Onwubolu et Davendra, 2006; Qian et al., 2008). 
However, due to its continuous nature, the applications of 
DE algorithm that are used to solve production scheduling 
problems are still very limited (Tasgetiren et al., 2007). 

2.5.1 Basics of Differential Evolution procedure

All evolutionary algorithms aim to improve the existing 
solution using the techniques of mutation, recombination 

and selection. The general paradigm of Differential Evolution 
is shown in Figure 7.

Figure 7. Differential Evolution algorithm scheme

Initialization- Creation of a population of individuals. The 
ith individual vector (chromosome) of the population at cur-
rent generation t with d dimensions is as follows,

(5)

Mutation - A random change of the vector Zi components. 
The change can be a single-point mutation, inversion, trans-
location, deletion, etc. For each individual vector Zk (t) that 
belongs to the current population, a new individual, called 
the mutant individual, U is derived through the combination 
of randomly selected and pre-specified individuals.

(6)

the indices m, n, i, and j are uniformly random integers 
mutually different and distinct from the current index ‘k’ and 
F is a real positive parameter, called mutation factor or scal-
ing factor (usually Є [0, 1]).

Recombination (Crossover) - merging the genetic information 
of two or more parent individuals for producing one or more 
descendants. DE has two crossover schemes, namely, the ex-
ponential crossover and the binomial or uniform crossover. 
Binomial crossover is used in the present work. The binomial 
or uniform crossover is performed on each component n (n= 
1, 2, . . . , d) of the mutant individual Uk,n (t+1). For each com-
ponent a random number ‘r’ in the interval [0, 1] is drawn 
and compared with the Crossover Rate (CR) or recombination 
factor (another DE control parameter), CR Є [0, 1]. If r < CR, 
then the nth component of the mutant individual Uk,n (t) will be 
selected; otherwise, the nth component of the target vector 
Zk,n (t) becomes the nth component.

(7)

Selection - Choice of the best individuals for the next cycle. If 
the new offspring yields a better value of the objective func-
tion, it replaces its parent in the next generation; otherwise, 
the parent is retained in the population, i.e.

(8)



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53

DOI: 10.14488/BJOPM.2018.v15.n1.a17

51

Where f ( ) is the objective function to be minimized. 

2.5.2 Different mutation strategies of Differential 
Evolution

Different working strategies of DE are suggested by Storn 
and Price (1997) along with the guidelines for the applica-
tion of these strategies to solve a problem. The strategies 
are represented as DE/x/y/z, where x is the vector, y is num-
ber of vectors whose difference is considered for mutation 
and z is the crossover scheme. ‘x’ takes either ‘rand’ or ‘best’ 
based on whether the vector is chosen randomly or the best 
one is chosen. ‘y’ takes either 1 or 2, to denote a single or 
two vector differences to be used for mutation. The index z 
takes either binomial (bin) or exponential (exp) based on the 
type of crossover scheme. 

2.6 TEACHING-LEARNING-BASED OPTIMIZATION 
ALGORITHM (TLBO)

Teaching-Learning-Based Optimization (TLBO) algorithm, 
developed by Rao et al., is based on the natural phenom-
enon of teaching and learning process in a classroom (Rao 
et Kalyankar, 2010; Rao et al., 2011). TLBO does not require 
any algorithm specific parameters. In optimization algo-
rithms, the population consists of different design variables. 
In TLBO, different design variables will be analogous to dif-
ferent subjects offered to learners and the learners’ result 
is analogous to the value of the fitness function, as in other 
population-based optimization techniques. The teacher is 
considered as the best solution in that particular generation. 
The process of working of TLBO is divided into two parts. 
The first part consists of ‘Teacher Phase’ and the second 
part consists of ‘Learner Phase’. The ‘Teacher Phase’ means 
learning from the teacher and the ‘Learner Phase’ means 
learning through the interaction between learners. 

2.6.1 Teacher phase

Ideally good teachers bring their learners up to their level 
in terms of knowledge. In practice, this is not possible and a 
teacher can only move the mean of a class up to some ex-
tent, depending on the capability of the class. This follows a 
random process depending on many factors. 

Initialization 

The class X is randomly initialized by a given data set of n 
rows and d dimensions using the following equation.

(9)

The ith learner of the class X at the current generation t 
with d subjects is as follows,

(10)

The mean value of each subject, j, of the class in genera-
tion t is given as

(11)

The teacher is the best learner, Xbest with minimum objec-
tive function value in the current class. The Teacher phase 
tries to increase the mean result of the learners and always 
tries to shift the learners towards the teacher. A new set of 
improved learners can be generated from the Equation 3.22.

(12)

)) (1( randroundTF += TF is the teaching factor with 
value between 1 and 2, and ‘r’ is the random number in the 
range [0, 1]. The value of TF can be found using the following 
equation:

2.6.2 Learner phase 

Learners increase their knowledge by two different meth-
ods: one through input from the teacher and the other 
through interaction between themselves. 

A learner learns something new if the other learner has 
more knowledge than him or her. For a learner ‘i’, another 
learner ‘j’ is randomly selected from the class.

(13)

Where f ( ) is an objective function to be minimized. The two 
phases are repeated untill a stopping criterion is met. Best 
learner is the best solution in the run.

3. APPLICATIONS – A SPECIFIC CASE TO SCHEDULING

As MOEAs recognition has rapidly grown, as successful 
and robust multiobjective optimizers and researchers from 
various fields of science and engineering have been applying 
MOEAs to solve optimization issues arising in their own do-
mains. The domains where the MOEAs optimization meth-



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53
DOI: 10.14488/BJOPM.2018.v15.n1.a17

52

ods (Ishibuchi, 2003) are applied are Scheduling Heuristics 
(Sajja et Chalamalasetti, 2014), Data Mining, Assignment 
and Management, Networking, Circuits and Communica-
tions, Bioinformatics, Control Systems and Robotics, Pattern 
Recognition and Image Processing, Artificial Neural Net-
works and Fuzzy Systems, Manufacturing, Composite Com-
ponent Design, Traffic Engineering and Transportation, Life 
Sciences, Embedded Systems, Routing Protocols, Algorithm 
Design, Website and Financial Optimization.

Few Pros and Cons that are faced by MOEAs while solving 
the optimization methods are: 

• The problem has multiple, possibly incommensura-
ble, objectives.

• The Computational time for each evaluation is in 
minutes or hours

• Parallelism is not encouraged

• The total number of evaluations is limited by finan-
cial, time, or resource constraints.

• Noise is low since repeated evaluations yield very 
similar results

• The overall decline in cost accomplished is high.

4. SUMMARY AND CONCLUSIONS

Six population-based meta-heuristic algorithms have 
been reviewed; their working procedure is briefed, and 
the range of applications indicated. Since scheduling prob-
lems fall into the class of NP-complete problems, they are 
among the most difficult to formulate and solve. Operations 

Research analysts and engineers have been pursuing solu-
tions to these problems for more than 35 years, with vary-
ing degrees of success. While they are difficult to solve, job 
shop scheduling problems are among the most important 
because they impact the ability of manufacturers to meet 
customer demands and make a profit. They also impact the 
ability of autonomous systems to optimize their operations, 
the deployment of intelligent systems, and the optimizations 
of communications systems. For this reason, operations re-
search analysts and engineers will continue this pursuit well 
into the next century. This paper may not add to the existing 
body of literature, but reorganizes it; and, it also serves the 
effort of scoping further research in this direction.

REFERENCES

Cheng, S.-L.; Hwang, C. (2001), “Optimal Approximation 
of Linear Systems by a Differential Evolution Algorithm”, IEEE 
Transactions on Systems, Man, and Cybernetics-Part A: Sys-
tems and Humans, Vol.31, No. 6, 698–707.

Dorigo, M.; Gambardella, L. M. (1997), “Ant colonies for 
the travelling salesman problem”, Bio Systems, Vol. 43, No.2, 
pp.73-81.

Ghosha, T. et al. (2011) “Meta-heuristics in cellular manu-
facturing: A state-of-the-art review”, International Journal of 
Industrial Engineering Computations, Vol. 2, pp. 87–122.

Goldberg, E. D. (1989), Genetic algorithms in search opti-
mization and machine learning, Addison Wesley Publishing 
Company Inc., New York, USA.

Ishibuchi, H. et al. (2003), “Balance between Genetic 
Search and Local Search in Memetic Algorithms for Multiob-
jective Permutation Flowshop Scheduling”, IEEE Transactions 
on Evolutionary Computation, Vol. 7, No. 2, pp. 204–33. 

Table1. Classification of scheduling algorithms

Class    Types of algorithms Methodology

O
pti

m
i-

za
tio

n 
ap

pr
oa

ch
es Enumerative procedure It is based on enumerating all combinations, sorting the feasible set and selecting 

the best solution from the feasible set.

Mathematical programming These are the formulations with a set of equation that represents the constraints 
and the objective criteria.

Ap
pr

ox
im

ati
on

 A
pp

ro
ac

he
s Branch-Bound algorithm It is based on the idea of intelligently enumerating the feasible solutions with 

lower and upper bounds.

Priority rules These are simple sequencing rules that specify the queue discipline.

Heuristics These algorithms rely on rules of thumb. Any approach without formal guarantee 
of performance can be considered heuristic.

Local search These algorithms use the concept of neighborhood search for better solutions 
within the neighbors and move towards optimal.

Evolutionary algorithms Based on the recognition that evolution, with its principles of mutation and se-
lecting, represents an efficient process for solving hard optimization problems.



Brazilian Journal of Operations & Production Management
Volume 15, Número 1, 2018, pp. 44-53

DOI: 10.14488/BJOPM.2018.v15.n1.a17

53

Jain, A. K. et al. (1999) “Data clustering: a review”, ACM 
Computer Survey, Vol. 31, No. 3, pp. 264–323.

Kalyanmoy, D. (2002), Optimization for Engineering Design, 
Prentice Hall, New Delhi, India.

Kennedy, J.; Ebehart, R. (1995), “Particle swarm optimiza-
tion”, in: IEEE International Conference on Neural Networks, 
Perth, Australia, 1995, Vol.4, pp.1942-1948.

Kicinger, R. et al. (2005) “Evolutionary computation and 
structural design: a survey of the state of the art”, Computers 
& Structures, Vol. 23-24, pp. 1943-78.

Lin, Y. -C., et al.  (2004), “A Mixed-Coding Scheme of Evo-
lutionary Algorithms to Solve Mixed-Integer Nonlinear Pro-
gramming Problems”, Computers & Mathematics with Appli-
cations, Vol. 47, No. 8–9, pp. 1295–1307.

Mackworth, A.; Goebel, R. (1998), Computational Intelli-
gence: A Logical Approach by David, Oxford University Press, 
Oxford, UK. ISBN 0-19-510270-3. 

Onwubolu, G.; Davendra, D. (2006), “Scheduling flow 
shops using differential evolution algorithm”, European Jour-
nal of Operational Research, Vol. 171, No. 2, 674-92.

Osman, I. H.; Laporte, G. (1996) “Metaheuristics: a biblio-
graphy”, Operations Research, Vol. 6, pp. 513–623. 

Price, K.; Storn, R. (1995), Differential Evolution—A Simple 
and Efficient Adaptive Scheme for Global Optimization Over 
Continuous Spaces, International Computer Science Institute 
of Berkeley, Berkeley, CA.

Qian, B. et al. (2008), “A hybrid differential evolution for 
permutation flow- shop scheduling”, International Journal of 
Advanced Manufacturing Technology, Vol. 38. No. 7–8, pp. 
757–77.

Rao, R. V. et al. (2011), “Teaching-learning-based optimi-
zation: A novel method for constrained mechanical design 
optimization problems”, Computer-aided Design, Vol. 43, No. 
3, 303-15.

Rao, R. V.; Kalyankar, V. D. (2010), “Parameter optimization 
of machining processes using a new optimization algorithm”, 
Materials and Manufacturing Processes, pp.978-85. DOI:10.1
080/10426914.2011.602792.

Sajja, R.; Chalamalasetti, S. R. (2014), “A selective survey 
on multi-objective meta-heuristic methods for optimization 
of master production scheduling using evolutionary approa-
ches.”, International Journal of Advances in Applied Mathe-
matics and Mechanics, Vol. 1, No. 3, pp. 109-20.

Schwefel, H. P. (1977), Numerische Optimierung von Com-
puter-modellen mittels der Evolutionsstrategie, Birkhäuser 
Verlag, Basel, Swiss.

Tasgetiren, M. F. et al.  (2007), “A discrete differential evo-
lution algorithm for the no-wait flowshop problem with total 
flowtime criterion”, in: proceedings of the IEEE symposium on 
computational intelligence in scheduling, 2007, pp. 251–8. 

Received: 30 Dec 2017 

Approved: 10 May 2018

DOI: 10.14488/BJOPM.2018.v15.n1.a17

How to cite: Chaparala, A.; Sajja, R. (2018), “Optimization using evolutionary metaheuristic techniques: a brief 
review”, Brazilian Journal of Operations & Production Management, Vol. 15, No. 1, pp. 44-53, available from: 
https://bjopm.emnuvens.com.br/bjopm/article/view/412 (access year month day).


