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ABSTRACT

Goal: This study proposes to investigate the main causes of failures in a power distribution system (PDS) that
can be mitigated through the implementation of best practices in maintenance management.

Design/Methodology/Approach: This research proposes a data-driven decision-making approach to aid the
preventive maintenance management through the analysis of Maintenance-Preventable Causes (MPC) of
failure in a real-life PDS. The proposed methodology is structured into three key steps: (1) Data collection and
processing of 7,721 power distribution failure records over 12 months (all resolved within 6 hours); (2) Pattern
detection using machine learning (ML) algorithms, specifically Association Rule Learning (ARL); and (3) Critical
event identification via Social Network Analysis (SNA) with graph-based visualization.

Results: The results show that there was a reduction in the continuity indicators Equivalent Interruption
Duration (EID) and Equivalent Interruption Frequency (EIF) by 8.54% and 6.26% respectively, taking as a basis
only one MPC (vegetation). The model enables more assertive guidance for both resource planning and the
execution of preventive maintenance actions in distribution networks.

Limitations of the investigation: The data used were limited to the southern region of Cear4, Brazil. Therefore,
by applying the same methodological approach, other power distribution systems can also be analyzed.
Practical implications: A case study in the southern region of Cear3, Brazil, was conducted to demonstrate the
practical applicability of the proposal. This study contributes to identifying variable dependency between
failures associated with each MPC and the critical points with the highest impact on the distribution system.
Originality/Value: This study contributes to the academic literature by applying a model that aids in identifying
and mitigating the primary failures occurring in power distribution systems, which result in financial losses
associated with power supply interruptions, through the use of text mining techniques.

Keywords: Power Distribution System; Machine Learning; Association Rule Mining; Apriori Algorithm; Social
Network Analysis.

1 INTRODUCTION

Failures in power distribution systems negatively impact system reliability, result in high
costs for distribution utilities, and lead to negative customer experiences (Landegren et al.,
2016; Duarte, Ribeiro and Costa, 2024). Gaining deeper knowledge about the root causes of
failures and identifying significant variables associated with these causes can enable more
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effective decision-making for properly and efficiently restoring the system (Wesendrup et al.,
2024; Campos, Ferreira and Freires, 2021).

Disruptions in power supply or destabilization of the entire system can arise from the
malfunction of any component within the power network. Studies indicate that the primary
causes of failures in electrical systems are related to vegetation, animals, and weather
conditions, including lightning strikes (Xu and Mo, 2006; Xu et al., 2007; Silva and Saraee, 2019).
These failures can generally be classified into two categories: Maintenance-Preventable
Causes (MPC) and Maintenance-Non-Preventable Causes (MNPC) (National Electric Energy
Agency - ANEEL, 2021). The primary interest of distribution utilities is to prevent avoidable
failures, i.e., those related to MPC. A key approach in analyzing MPC is leveraging knowledge
derived from past failure patterns.

However, due to the random nature of failures and the numerous contributing factors,
predicting or identifying failures remains an extremely challenging task (Hasegawa et al.,
2025). Moreover, the vast amounts of generated and stored data have made traditional data
processing methods increasingly difficult and complex (Kumera et al., 2024). Doostan and
Chowdhury (2017) demonstrated that failure prediction and identification tasks have been
facilitated by the application of advanced data analytics techniques combined with decision
models. According to Rezig et al. (2018), data mining primarily aims to extract the most
relevant information from large datasets and, based on predefined criteria, create information
and knowledge models. Consequently, several studies have been developed to analyze the
characteristics of various failures, using statistical techniques and algorithms to explore failure
databases (Doostan and Chowdhury, 2017; Ravi et al., 2019; Silva and Saraee, 2019).

In this context, analyzing maintenance failures in the power distribution system and
proposing corrective actions is a time-consuming task that depends on the experience of
maintenance personnel, the resources available for intervention, and the location of the
failure event (Moleda et al., 2023). Therefore, the application of Machine Learning (ML)
techniques presents an opportunity to address the complexity of decision-making, analyze
large volumes of historical failure data, and identify patterns of recurring critical events to be
mitigated (De Almeida, Lopes and Fontana, 2025). In this way, the use of machine learning
algorithms enables the overcoming of human limitations by processing extensive datasets,
uncovering hidden patterns, and supporting the proposition of effective intervention actions
(Hamdan et al., 2024).

This research proposes a data-driven approach to support preventive maintenance
management by analyzing Maintenance-Preventable Causes (MPC) of failures in a real-world
power distribution system (PDS). While this study builds upon the approach adopted by
Antomarioni et al. (2020, 2022), its primary distinction lies in the research locus. Antomarioni
et al. (2020) applied their methodology in a hydroelectric power plant, whereas Antomarioni
et al. (2022) focused on an onshore platform. In contrast, this study addresses PDS, which have
inherently different operational characteristics, failure patterns, and maintenance challenges.
Unlike power generation facilities, distribution networks involve a geographically dispersed
infrastructure that is more susceptible to external environmental factors, making failure
prediction and prevention even more complex.

This study aims to offer valuable insights into maintenance management practices by
employing Machine Learning (ML) approaches. As its main practical contribution, the findings
inform managers about the patterns associated with MPC failures, enabling a more efficient
allocation of financial resources. The proposed study seeks to improve system availability by
identifying correlations among preventable failures, ultimately reducing network disruptions.
Given the increasing commercial pressure to minimize operational expenses, this research is
justified by the need for cost reduction in distribution utilities (Novochadlo and Paladini, 2024).

In summary, this study contributes to reducing the number of customer complaints by
decreasing failure occurrences in the network and mitigating potential costs and fines
imposed by regulatory authorities due to future failures. Beyond bridging a gap in the
literature and offering practical contributions to the power distribution sector, this research
aligns with the Sustainable Development Goals (SDGs) in Brazil, specifically SDG-7 (Affordable
and Clean Energy), by promoting energy efficiency through failure reduction and improved
financial resource management in power networks.
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2 LITERATURE OVERVIEW

To ensure a reliable energy supply to consumers, maintenance management in a power
distribution system (PDS) is inherently complex. Operations are typically conducted manually
and require territorial control over vast distances. Extensive geographic areas, which are
susceptible to climatic effects, combined with the aging of electrical infrastructure, necessitate
continuous monitoring to prevent frequent failures in the PDS (Du et al., 2024; Oboudi and
Mohammadi, 2024; Liu et al., 2016).

Therefore, more advanced and efficient maintenance planning strategies are essential to
ensure asset availability (Mi et al., 2024). The reliability of the PDS is critical for maintaining the
uninterrupted supply of electricity to essential sectors, such as hospitals, major industrial
centers, and communication hubs. In this context, preventive maintenance measures play a
fundamental role (Luz et al., 2024; Yang et al., 2024). Preventive maintenance is an approach
that enables planning maintenance actions in the PDS based on the failure probability analysis
of system components, aiming to determine the optimal intervention period before a failure
occurs (Du et al., 2024; Oboudi and Mohammadi, 2024; Liu et al., 2016).

The literature identifies three main objectives when implementing preventive
maintenance: (i) minimizing costs while maintaining a predefined level of reliability, (ii)
maximizing reliability within budgetary and time constraints, and (iii) minimizing overall risks
(Dehghani et al., 2020). However, effective preventive maintenance requires identifying the
primary causes of system failures, such as extreme weather events, bird collisions with
transmission lines, line breakages, and failures in electrical components. Thus, preventive
maintenance serves as a strategic tool for optimizing decision-making processes regarding
scheduled maintenance intervals while ensuring energy availability (Moleda et al., 2023).

Various strategies for maintenance management have been proposed in the literature to
establish optimal preventive policies that balance costs and asset availability within the power
grid (Kammoun et al., 2022; Paiva et al., 2024). However, the inherent complexity of electrical
systems presents challenges in developing rapid and efficient preventive maintenance
routines (Yang, Yu, and Liu, 2022). Moreover, with the increasing dependence on energy
systems, new tools, such as data mining, are being integrated to facilitate the identification of
both critical and non-critical maintenance points (Al-Refaie and Hamdieh, 2024).

Data mining autonomously analyzes large datasets, enabling the extraction of meaningful
patterns and relationships. In this context, machine learning (ML) algorithms play a crucial role
in processing and learning from vast volumes of data (Jordan and Mitchell, 2015). ML
algorithms can be categorized based on the type of learning they employ: (a) supervised
learning, which relies on historical data with predefined response variables, and (b)
unsupervised learning, where learning occurs through similarity or distance measures
between observations (Ramasubramanian and Singh, 2017). Nowadays, there are other types
of learning worth mentioning, such as reinforcement learning and transfer learning (Zhu et al.,
2023).

Among the various ML algorithms available, this research focuses on Association Rule
Learning (ARL), also known as Association Rule Mining (ARM). ARL is a type of unsupervised
ML algorithm designed to uncover hidden interdependencies between variables and extract
association rules from large databases (Lin et al., 2019; Sheng et al., 2018; Silva and Saraee,
2019). By identifying failure patterns within the explored dataset, ARL contributes to the
development of more precise strategies for preserving the operational lifespan of monitored
assets (Paiva et al., 2024). Despite its well-established presence in the literature, further
research is needed to bridge the gap between mathematical methodologies and practical
recommendations through real-world case studies.

3 METHODOLOGY

This research adopts a descriptive approach and employs quantitative methods to
propose a data-driven framework for improving preventive maintenance management. The
study focuses on analyzing maintenance-preventable causes (MPC) of failures in a power
distribution system (PDS). The proposed methodology is structured into three main steps,
based on Antomarioni et al. (2020; 2022):

1. Data Collection and Management: data on all failure causes are collected, and those
with the highest frequency of occurrence are identified. Subsequently, the most
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relevant MPC of failure is selected;

2. Determination of Relevant Associations: a machine learning algorithm, specifically
Association Rule Learning (ARL), is applied to identify significant associations among
the primary failure causes;

3. Social Network Analysis (SNA): this step is based on graph and network theory,
enabling intuitive interpretation. Each node represents a distinct association rule,
and arrows connect a cause or group of causes to a node (representing antecedents
and consequents). If x— yitindicates that when cause xoccurs yis also likely to occur.
The node diameter represents the frequency of a failure cause in the dataset, while
node color opacity indicates the relative lift value of the rule.

This information empowers maintenance managers to make more informed
decisions to mitigate failure causes.

3.1 Association rule learning

ARL are expressed as A= B, where A,B< land An B =@, with /=(/;, [ ..., I) representing
a set of items, and T a set transaction such that 7 < / The set transaction D comprises all
possible transactions in the database. The components A and B are referred to as the
antecedent and consequent, respectively, or the Left-Hand Side (LHS) and Right-Hand Side
(RHS) of the rule. In simple terms, if antecedent A occurs, consequent B is also likely to occur.
The Support (Sup) and Confidence (Conf) metrics are mathematically expressed in Equations
(1) and (2), respectively (Wang et al., 2020):

Sup (A = B) = P(AUB) (1

Conf (A = B) = P(B|A) = P;‘tgf) Q)

Support represents the probability of a given item appearing in a transaction, while
confidence estimates the conditional probability of the occurrence of B given A (Liu et al.,
2016). According to Doostan and Chowdhury (2017), support and confidence are key metrics
for evaluating rule quality, as they indicate statistical significance and rule strength,
respectively.

Another critical metric is the lift value, expressed in Equation (3):

. _ Sup (A=B)
lift (A= B) = Sap B)xsup () (3)

The lift value measures the degree of independence between A and B. According to Yu et
al. (2019), when lift(A = B) = 1, the antecedent and consequent are independent, indicating
no meaningful association. lift(A = B) > 1, the occurrences of A and B are positively
correlated, making the rule useful.

In this study, applying ARL first requires generating a set transaction from standardized
failure causes, as illustrated in Table 1. The transactions are determined based on time
intervals, which are defined according to the intended analysis. The time interval is established
using event timestamps or by experts in maintenance management. It must be greater than
the typical maintenance response time to ensure that managers can intervene in the power
distribution network effectively.

Table 1 - Example of set transaction generated from failure causes

n Interval Set transaction
1 2019-01-01 00:00:00 instantaneous
2 2019-01-01 06:00:00 F( emergency shutdown", instantaneous",
instantaneous")
3 . c("Large customer internal defect", ‘"emergency
AUV R SUTELY shutdown", " fuse switch defect", "instantaneous")
4 2019-01-01 18:00:00 atmospheric discharges
5 2019-01-02 00:00:00 ¢("instantaneous", "temporary unidentified defect")

According to Chemweno et al. (2016), in the transaction generation process for a selected
failure cause, all failure causes occurring before or after it are combined to form a transaction
set. For instance, in Table 1, the second transaction initially records the failure cause
“emergency shutdown,” followed chronologically by “instantaneous,” and then
“instantaneous” again. This approach ensures that both preceding and subsequent failure
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events are considered during the transaction set generation process.

Next, the Apriori Algorithm is applied to extract frequent item subsets that can form
association rules within the dataset through an iterative, layer-by-layer process (Wang et al.,
2020). The Apriori-based data mining procedure consists of two main steps: (a) ldentifying
frequent item sets; (b) Generating strong association rules based on the frequent item sets
(Tian et al., 2020; Xinchun et al., 2018). The algorithm terminates when no further frequent
item sets can be found. This study follows the Apriori algorithm steps outlined by Tian et al.
(2020). Different constraints can be applied when analyzing association rules, including:

¢ Minimum Support: Defines the threshold for identifying frequent itemset. The

selection of this value depends on the characteristics of the dataset;

e Minimum Confidence: Determines rule strength. Increasing this threshold results in

fewer but stronger rules;

¢ Right-Hand Side (RHS): Since one objective of this research is to identify patterns

leading to MPC failures, association rules with MPC failure causes as the RHS are
prioritized.

Finally, the most relevant rules for MPC failures are identified based on their lift values.
Rules with the highest lift values are selected and interpreted by maintenance managers. The
SNA approach further enhances the analysis, providing a visual and structural representation
of failure cause associations.

4 RESULT
The results will be presented following the three steps described in the methodology.
4.1 Data collection and management

This research was conducted in the Cariri region, located in the southern part of Ceara
state, in northeastern Brazil. According to the Ceara Institute for Research and Economic
Strategy (IPECE), the Cariri region comprises 29 municipalities. With a total land area of
17,298.35 km?, the Brazilian Institute of Geography and Statistics (IBGE) estimated the region’s
population at 1,080,326 inhabitants in 2024. The local electricity distribution company supplies
power to more than 400,000 consumer units.

For this study, failure incidence data were collected over a 12-month period, resulting in
a total of 7,721 recorded failures. The data is stored in spreadsheets and manipulated by the
R Studio program. Figure 1 presents the monthly distribution of failures. All figures and tables
were created by the authors using the database provided by the case study company.

1200

970
1000 890892 888

800 658 629 610

600 >80 533 526

Frequency

400
200 95

Figure 1 - Number of failures per month
As shown in Figure 1, the first four months account for 47% of the total failures. This is

attributed to the region’s rainy season, during which the average precipitation reaches 725
mm. Analyzing the failure causes, 54 different types were identified. Table 2 presents the most
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frequent failure causes.

Table 2 - Main causes identified

Type

Description

Isan
MPC?

Frequency
(%)

Atmospheric discharges

Load Transfer and Retransfer

Instantaneous disturbances
(voltage spikes)

Bird contact

Emergency shutdown

Unidentified temporary defect

Vegetation interference

Critical Internal Day

Fuse switch defect

Incident without impact

Third-party accidental damage

Transformer defect

Brazilian Journal of Operations and Production Management, Vol. 22, No. 3, e20252702 | https://doi.org/10.14488B]JOPM.2702.2025

Refers to lightning strikes impacting the
electrical network or its equipment. These
events can lead to service interruptions and
potential damage to system assets.

This category is not associated with actual faults in
the distribution network. It involves switching
operations—either planned or emergency—to
transfer loads between feeders, followed by
restoration to the original configuration.

Assigned to short-duration outages, typically
lasting less than three minutes. These events are
often caused by temporary contacts (e.g., tree
branches touching the line), triggering automatic
protective devices such as reclosers. Although
service is quickly restored, such incidents signal the
need for targeted inspections.

Occurs when birds create a short circuit by bridging
energized components, such as transformers or
switchgear, leading to localized outages. This cause
is confirmed only when physical evidence of the
bird is observed on site.

Refers to deliberate disconnection requested by
field crews upon identifying imminent risks (e.g.,
vegetation in contact with conductors), even if the
service has already been automatically restored.
The shutdown is performed to eliminate hazards
prior to re-energization.

Used when field personnel are unable to
determine the root cause of a protection device
operation. This may result from limited inspection
time, lack of technical expertise, or difficulty in
accessing the entire medium-voltage (MV) or low-
voltage (LV) network segment.

Applies to faults caused by excessive vegetation
contact with overhead conductors. Restoration is
achieved through vegetation management, such as
pruning, by maintenance crews.

Designation applied to operationally critical days—
typically during severe weather events such as
heavy rain. Faults classified under this cause are
not included in continuity indices (e.g., Equivalent
Interruption Duration (EID) and Equivalent
Interruption Frequency (EIF)) for regulatory
purposes.

Malfunction of a fuse switch due to issues such as
a broken base or disconnection of the fuse
cartridge (link), which prevents normal operation.
A temporary bypass is implemented until full
replacement is completed.

Refers to an event detected in the distribution
system—either through monitoring systems,
protection device activation, or field inspection—
that did not result in any measurable disruption of
energy supply to end-users.

Faults caused by external agents, typically
accidental, such as vehicle collisions with utility
poles or construction activities that impact the
distribution infrastructure.

Internal failure of a distribution transformer,
confirmed through no-load testing in the field,
indicating that the unit is damaged and requires

No

No

No

No

Yes

Not
defined

Yes

No

Yes

Not
defined

No

Yes

17,37

13,03

12,46

10,24

8,79

8,47

5,01

414

3,42

2,23

1,98

1,68
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replacement.

Large customer internal defect  Interruptions originating within a customer's No 1,57
internal electrical installation, particularly in large
consumers or commercial/industrial facilities, and
not attributable to the utility’s network.

Normal condition Assigned when service complaints are not No 1,30
confirmed upon field inspection, as the power
supply has already been restored automatically
before the crew's arrival.

Animal contact General classification for faults caused by small No 1,11
animals (e.g., rodents or reptiles) making contact
with energized components, potentially resulting
in localized outages.

Other causes Sum of all other causes with an incidence of less  Not 7,19
than 1% defined

These insights provide maintenance managers with an overview of the months with the
highest failure rates and a detailed breakdown of the most recurrent causes. For the analyzed
case study, the maintenance-preventable causes (MPC) that imposed the highest demand on
the maintenance sector were: Emergency shutdown, Vegetation interference, and Fuse switch
defects.

4.2 Determination of the relevant associations

Based on these initial analyses, the model was applied to generate association rules to
identify potential electrical system failures and recommend optimal mitigation strategies. The
association rules were derived using a minimum support threshold of 0.0018, corresponding
to at least 100 occurrences. This means that any itemset appearing more than 100 times is
considered frequent. These rules can then be analyzed and interpreted to identify the most
significant ones. It is worth noting that selecting a lower support threshold is generally
preferable to choosing a higher one, as the latter may lead to the omission of potentially
valuable rules.

The minimum confidence threshold was set at 70%. As previously mentioned, the
selection of this value depends on the discretion of maintenance managers. To identify the
most relevant association rules that reveal patterns for MPC failures, all rules were analyzed
using the inspection function of the Apriori algorithm. This process involves classifying and
identifying high-quality rules with significant lift values. In this study, rules with a lift value
greater than 3.0 were selected for further analysis.

Tables 3, 4 and 5 summarize the results of the association rule mining process for failures
related to emergency shutdowns, vegetation-related incidents, and fuse switch defects,
respectively.

Table 3 - Association Rule Mining for Failures Related to "Emergency Shutdown"

LHS RHS Support  Confidence Lift
{foreign object, large customer internal defect} - {emergency 0.00212  1.0000 3.5783
shutdown}

{temporary unidentified defect, bird, voltage level {emergency 0.00282  1.0000 3.5783
complaint} shutdown}

{fallen tree, lightning strikes, vegetation} - {emergency 0.00212  1.0000 3.5783
shutdown}

{fallen tree, temporary unidentified defect, - {emergency 0.00212  1.0000 3.5783

vegetation} shutdown}

{fallen tree, load transfer and retransfer, - {emergency 0.00212  1.0000 3.5783

vegetation} shutdown}

{temporary unidentified defect, shutdown upon - {emergency 0.00212  1.0000 3.5783

customer request, vegetation} shutdown}

{temporary unidentified defect, shutdown upon - {emergency 0.00282  1.0000 3.5783

customer request, load transfer and retransfer} shutdown}

{shutdown upon customer request, {emergency 0.00282  1.0000 3.5783

instantaneous failure, load transfer and => shutdown}

retransfer}

{animals, kite, load transfer and retransfer} => {emergency 0.00212  1.0000 3.5783
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shutdown}
{instantaneous failure, kite, load transfer and {emergency 0.00212  1.0000 3.5783
retransfer} shutdown}
{instantaneous failure, bird, kite} - {emergency 0.00212  1.0000 3.5783
shutdown}
{insulator defect, normal condition, {emergency 0.00282 1.0000 3.5783
instantaneous failure} shutdown}
Table 4 - Association Rule Mining Results for Failures Related to "Vegetation"
LHS RHS Support  Confidence Lift
{fallen tree, lightning strikes, emergency shutdown} => {vegetation} 0.00212 1.0000 4.4842
{fallen tree, temporary unidentified defect, - {vegetation} 0.00212  1.0000 4.4842
emergency shutdown}
{fallen tree, emergency shutdown, load transfer and - {vegetation} 0.00212 1.0000 4.4842
retransfer}
{material degradation, lightning strikes, bird} => {vegetation} 0.00212 1.0000 4.4842
{large customer internal defect, instantaneous failure, - {vegetation}  0.00212  1.0000 4.4842
bird's nest}
{large customer internal defect, bird's nest, bird} => {vegetation} 0.00212 1.0000 4.4842
{bird's nest, bird, accidental third-party interference} =~ => {vegetation} 0.00212 1.0000 4.4842
{fuse switch defect, lightning strikes, bird's nest} => {vegetation} 0.00282 1.0000 4.4842
{lightning strikes, bird's nest, bird} => {vegetation} 0.00494 1.0000 4.4842
{temporary unidentified defect, bird's nest, load - {vegetation}  0.00282  1.0000 4.4842
transfer and retransfer}
{temporary unidentified defect, bird's nest, bird} => {vegetation} 0.00212 1.0000 4.4842
{bird's nest, bird, load transfer and retransfer} => {vegetation} 0.00353 1.0000 4.4842
Table 5 - Association Rule Mining Results for Failures Related to "Fuse Switch Defect"
LHS RHS Support  Confidence Lift
{customer internal defect, accidental third-party - {fuse switch 0.00212 1.0000 6.1609
interference, load transfer and retransfer} defect}
{customer internal defect, bird, accidental third- - {fuse switch 0.00212 1.0000 6.1609
party interference, load transfer and retransfer} defect}
{lightning strikes, emergency shutdown, broken - {fuse switch 0.00212 1.0000 6.1609
jumper, bird, vegetation} defect}
{lightning strikes, instantaneous failure, broken - {fuse switch 0.00212 1.0000 6.1609
jumper, bird, vegetation} defect}
{temporary unidentified defect, lightning strikes, - {fuse switch 0.00212 1.0000 6.1609
instantaneous failure, broken jumper, bird} defect}
{lightning strikes, emergency shutdown, broken {fuse switch 0.00212 1.0000 6.1609
jumper, bird, load transfer and retransfer, => defect}
vegetation}
{temporary unidentified defect, lightning strikes, {fuse switch 0.00212 1.0000 6.1609
instantaneous failure, broken jumper, bird, => defect}
vegetation}
{lightning strikes, instantaneous failure, broken {fuse switch 0.00212  1.0000 6.1609
jumper, bird, load transfer and retransfer, => defect}
vegetation}
{temporary unidentified defect, lightning strikes, {fuse switch 0.00212 1.0000 6.1609
instantaneous failure, broken jumper, bird, load => defect}
transfer and retransfer}
{temporary unidentified defect, lightning strikes, {fuse switch 0.00212 1.0000 6.1609
instantaneous failure, broken jumper, bird, load => defect}
transfer and retransfer, vegetation}
{lightning strikes, broken jumper, bird, vegetation} - {fuse switch 0.00282  0.8000 4.9287
defect}
{|nstant.aneous failure, broken jumper, bird, - {fuse switch 0.00282  0.8000 4.9287
vegetation} defect}

By analyzing Table 3, it is evident that fallen trees and vegetation are frequent causes of
failures related to emergency shutdowns. Table 4 highlights that fallen trees and adverse
weather conditions (lightning strikes) significantly impact failures related to vegetation. Finally,
Table 5 indicates that the primary causes of fuse switch defects are broken jumpers,
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vegetation, and adverse weather conditions (lightning strikes).

4.3 Social network analysis

To enhance the visualization of these findings, social network analysis (SNA) was applied,
allowing a clearer interpretation of the association rules related to MPC failures. Figures 2, 3
and 4 present the association rule mining results for emergency shutdowns, vegetation-
related failures, and fuse switch defects, respectively.
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Figure 2 - SNA for failures related to “emergency shutdown”
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Figure 3 - SNA for failures related to “vegetation”
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Figure 4 - SNA for failures related to “fuse switch defect”

In summary, the results indicate a strong correlation between failure types within each
MPC category, with vegetation emerging as a predominant cause. Consequently, maintenance
managers should implement preventive measures such as intensifying electrical grid
inspections to identify critical points and schedule targeted interventions.

5 DISCUSSION

Based on the results of the association rules generated, maintenance managers decided
to intensify on-site visual inspections across the entire network. Subsequently, preventive
interventions were planned to proactively address failures, with a primary focus on the MPC
category "vegetation." After one year of implementing a preventive maintenance plan
specifically targeting vegetation-related failures, a comparative analysis of results (before and
after implementation) was conducted.

In Brazil, the National Electric Energy Agency (ANEEL) monitors two key electricity
reliability indicators to assess the quality of distribution services: Equivalent Interruption
Duration per Consumer Unit (EID) - expressed in hours and hundredths of hours; and
Equivalent Interruption Frequency per Consumer Unit (EIF) - expressed as the number of
interruptions and hundredths of an interruption. Both EID and EIF are cumulative annual
indicators that aggregate interruption data across all consumers in a given year. Thus, these
indicators were used to evaluate our preventive maintenance plan by comparing the first four
months (January-April) of two consecutive years: the baseline period before implementation
(Year 1) and the same seasonal period after implementation (Year 2). This seasonal
comparison controls for annual variation while isolating the maintenance plan's effects.
Figures 5.a and 5.b show the performance of EID and EIF, respectively.
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The results show a cumulative reduction of 8.54% and 6.26% in EID and EIF, respectively,
considering only the MPC vegetation as the failure cause. This outcome demonstrates the
benefits of a systemic approach to failure analysis, as proposed in this study. More specifically,
the findings reveal several managerial implications relevant to maintenance management in
electrical distribution systems.

The first implication concerns the prioritization of preventive actions based on data.
Through Association Rule Mining, it was possible to identify critical patterns, such as the
predominance of vegetation as the primary cause of failures. This enables managers to adopt
a proactive approach, intensifying targeted inspections and planning preventive interventions
before failures occur, thereby improving system reliability.

Furthermore, the application of computational analysis techniques and artificial
intelligence in maintenance management underscores the importance of digital
transformation in the electricity sector. The use of algorithms to identify failures and define
strategic actions can be expanded to other causes beyond vegetation, making the
maintenance system increasingly efficient and data-driven.

Additionally, reducing failures and power supply interruptions directly impacts consumer
perception and regulatory indicators required by agencies such as ANEEL. This can result in
an improved reputation for the utility company and a lower risk of regulatory penalties,
corroborating the authors' claims (Rampini and Berssaneti, 2024) about the importance of risk
management to implement decision-making that results in adequate control of maintenance
operations. The reduction in interruption indicators (EID and EIF) confirms that a more
targeted maintenance plan can optimize company resources (Dhewi et al., 2025). Instead of
conducting generalized inspections and maintenance, the company can focus efforts on the
most critical points, reducing operational costs and improving service performance.

The results suggest that this model can be integrated into the company's strategic
planning, enabling the execution of short-, medium-, and long-term action plans. Moreover,
there is potential to expand the use of this technique to analyze other failure causes (such as
mechanical failures or equipment defects), thereby increasing the robustness of the
maintenance system. However, implementing this model requires that managers and
technical staff be prepared to interpret failure analysis results and apply the
recommendations in maintenance planning. This implies the need for continuous training to
ensure that data-driven strategies are correctly implemented.

6 CONCLUSION

A power distribution system is inherently vulnerable to failures, which impact utility
companies responsible for ensuring high-quality power supply. Studies and analyses aimed at
improving reliability with minimal costs and optimal performance indicators are essential for
effective maintenance planning in power distribution companies. Therefore, it is crucial for
electricity distribution companies to implement effective anomaly management strategies.

This study contributes to this objective by proposing a model capable of identifying
variable dependency between failures related to each MPC and the critical points with the
highest impact on the distribution system. Consequently, it was possible to strategically direct
condition-based preventive interventions to the most critical segments within a given region.

From a theoretical perspective, the analysis of a dataset comprising more than 7,000
failure occurrences underscores the significance of data processing and analysis using
computational techniques and Machine Learning (ML). This study contributes to this field by
specifically addressing failures in power distribution networks.

From a practical perspective, applying the proposed model to a real-world distribution
system resulted in a reduction of continuity indicators when compared to the performance of
the existing network configuration. The model enabled more precise planning and execution
of maintenance activities, improving maintenance management efficiency and mitigating the
financial losses associated with power outages.

In summary, the results indicate that a data-driven approach not only improves reliability
and operational efficiency but also generates competitive advantages, reduces costs, and
strengthens maintenance management in the electrical distribution sector.

This study offers important insights into power distribution failures while acknowledging
certain limitations. Our analysis specifically examined the most frequently occurring failure
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types during the study period, which means some rare but potentially significant causes may
not have been captured. We selected the Apriori algorithm for its strengths in producing
interpretable results, though we recognize that alternative approaches like FP-Growth or
ECLAT could potentially reveal different patterns, especially when applied to more extensive
datasets. For future research, important directions include investigating relationships
between primary and secondary failure causes to improve prioritization, evaluating model
performance over extended periods to assess robustness, comparing different association
rule algorithms to optimize pattern discovery, and exploring the integration of environmental
factors. These steps would further strengthen the practical application of these findings for
utility companies.
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