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1 INTRODUCTION 

Failures in power distribution systems negatively impact system reliability, result in high 
costs for distribution utilities, and lead to negative customer experiences (Landegren et al., 
2016; Duarte, Ribeiro and Costa, 2024). Gaining deeper knowledge about the root causes of 
failures and identifying significant variables associated with these causes can enable more  
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effective decision-making for properly and efficiently restoring the system (Wesendrup et al., 
2024; Campos, Ferreira and Freires, 2021). 

Disruptions in power supply or destabilization of the entire system can arise from the 
malfunction of any component within the power network. Studies indicate that the primary 
causes of failures in electrical systems are related to vegetation, animals, and weather 
conditions, including lightning strikes (Xu and Mo, 2006; Xu et al., 2007; Silva and Saraee, 2019). 
These failures can generally be classified into two categories: Maintenance-Preventable 
Causes (MPC) and Maintenance-Non-Preventable Causes (MNPC) (National Electric Energy 
Agency - ANEEL, 2021). The primary interest of distribution utilities is to prevent avoidable 
failures, i.e., those related to MPC. A key approach in analyzing MPC is leveraging knowledge 
derived from past failure patterns. 

However, due to the random nature of failures and the numerous contributing factors, 
predicting or identifying failures remains an extremely challenging task (Hasegawa et al., 
2025). Moreover, the vast amounts of generated and stored data have made traditional data 
processing methods increasingly difficult and complex (Kumera et al., 2024). Doostan and 
Chowdhury (2017) demonstrated that failure prediction and identification tasks have been 
facilitated by the application of advanced data analytics techniques combined with decision 
models. According to Rezig et al. (2018), data mining primarily aims to extract the most 
relevant information from large datasets and, based on predefined criteria, create information 
and knowledge models. Consequently, several studies have been developed to analyze the 
characteristics of various failures, using statistical techniques and algorithms to explore failure 
databases (Doostan and Chowdhury, 2017; Ravi et al., 2019; Silva and Saraee, 2019). 

In this context, analyzing maintenance failures in the power distribution system and 
proposing corrective actions is a time-consuming task that depends on the experience of 
maintenance personnel, the resources available for intervention, and the location of the 
failure event (Molęda et al., 2023). Therefore, the application of Machine Learning (ML) 
techniques presents an opportunity to address the complexity of decision-making, analyze 
large volumes of historical failure data, and identify patterns of recurring critical events to be 
mitigated (De Almeida, Lopes and Fontana, 2025). In this way, the use of machine learning 
algorithms enables the overcoming of human limitations by processing extensive datasets, 
uncovering hidden patterns, and supporting the proposition of effective intervention actions 
(Hamdan et al., 2024). 

This research proposes a data-driven approach to support preventive maintenance 
management by analyzing Maintenance-Preventable Causes (MPC) of failures in a real-world 
power distribution system (PDS). While this study builds upon the approach adopted by 
Antomarioni et al. (2020, 2022), its primary distinction lies in the research locus. Antomarioni 
et al. (2020) applied their methodology in a hydroelectric power plant, whereas Antomarioni 
et al. (2022) focused on an onshore platform. In contrast, this study addresses PDS, which have 
inherently different operational characteristics, failure patterns, and maintenance challenges. 
Unlike power generation facilities, distribution networks involve a geographically dispersed 
infrastructure that is more susceptible to external environmental factors, making failure 
prediction and prevention even more complex. 

This study aims to offer valuable insights into maintenance management practices by 
employing Machine Learning (ML) approaches. As its main practical contribution, the findings 
inform managers about the patterns associated with MPC failures, enabling a more efficient 
allocation of financial resources. The proposed study seeks to improve system availability by 
identifying correlations among preventable failures, ultimately reducing network disruptions. 
Given the increasing commercial pressure to minimize operational expenses, this research is 
justified by the need for cost reduction in distribution utilities (Novochadlo and Paladini, 2024). 

In summary, this study contributes to reducing the number of customer complaints by 
decreasing failure occurrences in the network and mitigating potential costs and fines 
imposed by regulatory authorities due to future failures. Beyond bridging a gap in the 
literature and offering practical contributions to the power distribution sector, this research 
aligns with the Sustainable Development Goals (SDGs) in Brazil, specifically SDG-7 (Affordable 
and Clean Energy), by promoting energy efficiency through failure reduction and improved 
financial resource management in power networks. 
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2 LITERATURE OVERVIEW 

To ensure a reliable energy supply to consumers, maintenance management in a power 
distribution system (PDS) is inherently complex. Operations are typically conducted manually 
and require territorial control over vast distances. Extensive geographic areas, which are 
susceptible to climatic effects, combined with the aging of electrical infrastructure, necessitate 
continuous monitoring to prevent frequent failures in the PDS (Du et al., 2024; Oboudi and 
Mohammadi, 2024; Liu et al., 2016). 

Therefore, more advanced and efficient maintenance planning strategies are essential to 
ensure asset availability (Mi et al., 2024). The reliability of the PDS is critical for maintaining the 
uninterrupted supply of electricity to essential sectors, such as hospitals, major industrial 
centers, and communication hubs. In this context, preventive maintenance measures play a 
fundamental role (Luz et al., 2024; Yang et al., 2024). Preventive maintenance is an approach 
that enables planning maintenance actions in the PDS based on the failure probability analysis 
of system components, aiming to determine the optimal intervention period before a failure 
occurs (Du et al., 2024; Oboudi and Mohammadi, 2024; Liu et al., 2016). 

The literature identifies three main objectives when implementing preventive 
maintenance: (i) minimizing costs while maintaining a predefined level of reliability, (ii) 
maximizing reliability within budgetary and time constraints, and (iii) minimizing overall risks 
(Dehghani et al., 2020). However, effective preventive maintenance requires identifying the 
primary causes of system failures, such as extreme weather events, bird collisions with 
transmission lines, line breakages, and failures in electrical components. Thus, preventive 
maintenance serves as a strategic tool for optimizing decision-making processes regarding 
scheduled maintenance intervals while ensuring energy availability (Molęda et al., 2023). 

Various strategies for maintenance management have been proposed in the literature to 
establish optimal preventive policies that balance costs and asset availability within the power 
grid (Kammoun et al., 2022; Paiva et al., 2024). However, the inherent complexity of electrical 
systems presents challenges in developing rapid and efficient preventive maintenance 
routines (Yang, Yu, and Liu, 2022). Moreover, with the increasing dependence on energy 
systems, new tools, such as data mining, are being integrated to facilitate the identification of 
both critical and non-critical maintenance points (Al-Refaie and Hamdieh, 2024).  

Data mining autonomously analyzes large datasets, enabling the extraction of meaningful 
patterns and relationships. In this context, machine learning (ML) algorithms play a crucial role 
in processing and learning from vast volumes of data (Jordan and Mitchell, 2015). ML 
algorithms can be categorized based on the type of learning they employ: (a) supervised 
learning, which relies on historical data with predefined response variables, and (b) 
unsupervised learning, where learning occurs through similarity or distance measures 
between observations (Ramasubramanian and Singh, 2017). Nowadays, there are other types 
of learning worth mentioning, such as reinforcement learning and transfer learning (Zhu et al., 
2023). 

Among the various ML algorithms available, this research focuses on Association Rule 
Learning (ARL), also known as Association Rule Mining (ARM). ARL is a type of unsupervised 
ML algorithm designed to uncover hidden interdependencies between variables and extract 
association rules from large databases (Lin et al., 2019; Sheng et al., 2018; Silva and Saraee, 
2019). By identifying failure patterns within the explored dataset, ARL contributes to the 
development of more precise strategies for preserving the operational lifespan of monitored 
assets (Paiva et al., 2024). Despite its well-established presence in the literature, further 
research is needed to bridge the gap between mathematical methodologies and practical 
recommendations through real-world case studies. 

 

3 METHODOLOGY 

This research adopts a descriptive approach and employs quantitative methods to 
propose a data-driven framework for improving preventive maintenance management. The 
study focuses on analyzing maintenance-preventable causes (MPC) of failures in a power 
distribution system (PDS). The proposed methodology is structured into three main steps, 
based on Antomarioni et al. (2020; 2022): 

1. Data Collection and Management: data on all failure causes are collected, and those 
with the highest frequency of occurrence are identified. Subsequently, the most 
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relevant MPC of failure is selected; 
2. Determination of Relevant Associations: a machine learning algorithm, specifically 

Association Rule Learning (ARL), is applied to identify significant associations among 
the primary failure causes; 

3. Social Network Analysis (SNA): this step is based on graph and network theory, 
enabling intuitive interpretation. Each node represents a distinct association rule, 
and arrows connect a cause or group of causes to a node (representing antecedents 
and consequents). If x→y it indicates that when cause x occurs y is also likely to occur. 
The node diameter represents the frequency of a failure cause in the dataset, while 
node color opacity indicates the relative lift value of the rule. 

This information empowers maintenance managers to make more informed 
decisions to mitigate failure causes. 

 

3.1 Association rule learning 

ARL are expressed as A ⇒ B, where A, B ⊆ I and A ∩ B = ∅, with I = (I1, I2, ..., Im) representing 
a set of items, and T a set transaction such that T ⊆ I. The set transaction D comprises all 
possible transactions in the database. The components A and B are referred to as the 
antecedent and consequent, respectively, or the Left-Hand Side (LHS) and Right-Hand Side 
(RHS) of the rule. In simple terms, if antecedent A occurs, consequent B is also likely to occur. 
The Support (𝑆𝑢𝑝) and Confidence (𝐶𝑜𝑛𝑓) metrics are mathematically expressed in Equations 
(1) and (2), respectively (Wang et al., 2020): 

𝑆𝑢𝑝 (A ⟹ B) = P(A ∪ B)                                                                                                                     (1) 

𝐶𝑜𝑛𝑓 (A ⟹ B) = P(B|A) =
P(A∩B)

P(A)
                                                                                                         (2) 

Support represents the probability of a given item appearing in a transaction, while 
confidence estimates the conditional probability of the occurrence of B given A (Liu et al., 
2016). According to Doostan and Chowdhury (2017), support and confidence are key metrics 
for evaluating rule quality, as they indicate statistical significance and rule strength, 
respectively. 

Another critical metric is the lift value, expressed in Equation (3): 

𝑙𝑖𝑓𝑡 (𝐴 ⟹ 𝐵) =
𝑆𝑢𝑝 (𝐴⟹𝐵)

𝑆𝑢𝑝 (𝐵)×𝑆𝑢𝑝 (𝐴)
                                                                                                                 (3) 

 
The lift value measures the degree of independence between A and B. According to Yu et 

al. (2019), when 𝑙𝑖𝑓𝑡(𝐴 ⟹ 𝐵) = 1, the antecedent and consequent are independent, indicating 
no meaningful association. 𝑙𝑖𝑓𝑡(𝐴 ⟹ 𝐵) > 1, the occurrences of A and B are positively 
correlated, making the rule useful. 

In this study, applying ARL first requires generating a set transaction from standardized 
failure causes, as illustrated in Table 1. The transactions are determined based on time 
intervals, which are defined according to the intended analysis. The time interval is established 
using event timestamps or by experts in maintenance management. It must be greater than 
the typical maintenance response time to ensure that managers can intervene in the power 
distribution network effectively. 

 
        Table 1 – Example of set transaction generated from failure causes 

n Interval Set transaction 

1 2019-01-01 00:00:00 instantaneous 

2 
2019-01-01 06:00:00 

c("emergency shutdown", "instantaneous", " 

instantaneous") 

3 
2019-01-01 12:00:00 

c("Large customer internal defect", "emergency 

shutdown", " fuse switch defect", "instantaneous") 

4 2019-01-01 18:00:00 atmospheric discharges 

5 2019-01-02 00:00:00 c("instantaneous", "temporary unidentified defect") 

 
 
According to Chemweno et al. (2016), in the transaction generation process for a selected 

failure cause, all failure causes occurring before or after it are combined to form a transaction 
set. For instance, in Table 1, the second transaction initially records the failure cause 
“emergency shutdown,” followed chronologically by “instantaneous,” and then 
“instantaneous” again. This approach ensures that both preceding and subsequent failure 
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events are considered during the transaction set generation process. 
Next, the Apriori Algorithm is applied to extract frequent item subsets that can form 

association rules within the dataset through an iterative, layer-by-layer process (Wang et al., 
2020). The Apriori-based data mining procedure consists of two main steps: (a) Identifying 
frequent item sets; (b) Generating strong association rules based on the frequent item sets 
(Tian et al., 2020; Xinchun et al., 2018). The algorithm terminates when no further frequent 
item sets can be found. This study follows the Apriori algorithm steps outlined by Tian et al. 
(2020). Different constraints can be applied when analyzing association rules, including: 

• Minimum Support: Defines the threshold for identifying frequent itemset. The 
selection of this value depends on the characteristics of the dataset; 

• Minimum Confidence: Determines rule strength. Increasing this threshold results in 
fewer but stronger rules; 

• Right-Hand Side (RHS): Since one objective of this research is to identify patterns 
leading to MPC failures, association rules with MPC failure causes as the RHS are 
prioritized. 

Finally, the most relevant rules for MPC failures are identified based on their lift values. 
Rules with the highest lift values are selected and interpreted by maintenance managers. The 
SNA approach further enhances the analysis, providing a visual and structural representation 
of failure cause associations. 

 

4 RESULT 

The results will be presented following the three steps described in the methodology. 
 

 4.1 Data collection and management 
 

This research was conducted in the Cariri region, located in the southern part of Ceará 
state, in northeastern Brazil. According to the Ceará Institute for Research and Economic 
Strategy (IPECE), the Cariri region comprises 29 municipalities. With a total land area of 
17,298.35 km², the Brazilian Institute of Geography and Statistics (IBGE) estimated the region’s 
population at 1,080,326 inhabitants in 2024. The local electricity distribution company supplies 
power to more than 400,000 consumer units. 

For this study, failure incidence data were collected over a 12-month period, resulting in 
a total of 7,721 recorded failures. The data is stored in spreadsheets and manipulated by the 
R Studio program. Figure 1 presents the monthly distribution of failures. All figures and tables 
were created by the authors using the database provided by the case study company. 

 
 

 
Figure 1 - Number of failures per month 

 
As shown in Figure 1, the first four months account for 47% of the total failures. This is 

attributed to the region’s rainy season, during which the average precipitation reaches 725 
mm. Analyzing the failure causes, 54 different types were identified. Table 2 presents the most 
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frequent failure causes. 
 

                         Table 2 - Main causes identified 

Type Description Is an 

MPC? 

Frequency 

(%) 

Atmospheric discharges Refers to lightning strikes impacting the 

electrical network or its equipment. These 

events can lead to service interruptions and 

potential damage to system assets. 

No 17,37 

Load Transfer and Retransfer This category is not associated with actual faults in 

the distribution network. It involves switching 

operations—either planned or emergency—to 

transfer loads between feeders, followed by 

restoration to the original configuration. 

No 13,03 

Instantaneous disturbances 

(voltage spikes) 

Assigned to short-duration outages, typically 

lasting less than three minutes. These events are 

often caused by temporary contacts (e.g., tree 

branches touching the line), triggering automatic 

protective devices such as reclosers. Although 

service is quickly restored, such incidents signal the 

need for targeted inspections. 

No 12,46 

Bird contact Occurs when birds create a short circuit by bridging 

energized components, such as transformers or 

switchgear, leading to localized outages. This cause 

is confirmed only when physical evidence of the 

bird is observed on site. 

No 10,24 

Emergency shutdown Refers to deliberate disconnection requested by 

field crews upon identifying imminent risks (e.g., 

vegetation in contact with conductors), even if the 

service has already been automatically restored. 

The shutdown is performed to eliminate hazards 

prior to re-energization. 

Yes 8,79 

Unidentified temporary defect Used when field personnel are unable to 

determine the root cause of a protection device 

operation. This may result from limited inspection 

time, lack of technical expertise, or difficulty in 

accessing the entire medium-voltage (MV) or low-

voltage (LV) network segment. 

Not 

defined 

8,47 

Vegetation interference Applies to faults caused by excessive vegetation 

contact with overhead conductors. Restoration is 

achieved through vegetation management, such as 

pruning, by maintenance crews. 

Yes 5,01 

Critical Internal Day Designation applied to operationally critical days—

typically during severe weather events such as 

heavy rain. Faults classified under this cause are 

not included in continuity indices (e.g., Equivalent 

Interruption Duration (EID) and Equivalent 

Interruption Frequency (EIF)) for regulatory 

purposes. 

No 4,14 

Fuse switch defect Malfunction of a fuse switch due to issues such as 

a broken base or disconnection of the fuse 

cartridge (link), which prevents normal operation. 

A temporary bypass is implemented until full 

replacement is completed. 

Yes 3,42 

Incident without impact Refers to an event detected in the distribution 

system—either through monitoring systems, 

protection device activation, or field inspection—

that did not result in any measurable disruption of 

energy supply to end-users. 

Not 

defined 

2,23 

Third-party accidental damage Faults caused by external agents, typically 

accidental, such as vehicle collisions with utility 

poles or construction activities that impact the 

distribution infrastructure. 

No 1,98 

Transformer defect Internal failure of a distribution transformer, 

confirmed through no-load testing in the field, 

indicating that the unit is damaged and requires 

Yes 1,68 
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replacement. 

Large customer internal defect Interruptions originating within a customer's 

internal electrical installation, particularly in large 

consumers or commercial/industrial facilities, and 

not attributable to the utility’s network. 

No 1,57 

Normal condition Assigned when service complaints are not 

confirmed upon field inspection, as the power 

supply has already been restored automatically 

before the crew's arrival. 

No 1,30 

Animal contact General classification for faults caused by small 

animals (e.g., rodents or reptiles) making contact 

with energized components, potentially resulting 

in localized outages. 

No 1,11 

Other causes Sum of all other causes with an incidence of less 

than 1% 

Not 

defined 

7,19 

 
 
These insights provide maintenance managers with an overview of the months with the 

highest failure rates and a detailed breakdown of the most recurrent causes. For the analyzed 
case study, the maintenance-preventable causes (MPC) that imposed the highest demand on 
the maintenance sector were: Emergency shutdown, Vegetation interference, and Fuse switch 
defects. 

 
                4.2 Determination of the relevant associations 
 

Based on these initial analyses, the model was applied to generate association rules to 
identify potential electrical system failures and recommend optimal mitigation strategies. The 
association rules were derived using a minimum support threshold of 0.0018, corresponding 
to at least 100 occurrences. This means that any itemset appearing more than 100 times is 
considered frequent. These rules can then be analyzed and interpreted to identify the most 
significant ones. It is worth noting that selecting a lower support threshold is generally 
preferable to choosing a higher one, as the latter may lead to the omission of potentially 
valuable rules. 

The minimum confidence threshold was set at 70%. As previously mentioned, the 
selection of this value depends on the discretion of maintenance managers. To identify the 
most relevant association rules that reveal patterns for MPC failures, all rules were analyzed 
using the inspection function of the Apriori algorithm. This process involves classifying and 
identifying high-quality rules with significant lift values. In this study, rules with a lift value 
greater than 3.0 were selected for further analysis. 

Tables 3, 4 and 5 summarize the results of the association rule mining process for failures 
related to emergency shutdowns, vegetation-related incidents, and fuse switch defects, 
respectively. 

 
Table 3 - Association Rule Mining for Failures Related to "Emergency Shutdown" 

LHS  RHS Support Confidence Lift 

{foreign object, large customer internal defect} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{temporary unidentified defect, bird, voltage level 

complaint} 
=> 

{emergency 

shutdown} 

0.00282 1.0000 3.5783 

{fallen tree, lightning strikes, vegetation} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{fallen tree, temporary unidentified defect, 

vegetation} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{fallen tree, load transfer and retransfer, 

vegetation} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{temporary unidentified defect, shutdown upon 

customer request, vegetation} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{temporary unidentified defect, shutdown upon 

customer request, load transfer and retransfer} 
=> 

{emergency 

shutdown} 

0.00282 1.0000 3.5783 

{shutdown upon customer request, 

instantaneous failure, load transfer and 

retransfer} 

=> 

{emergency 

shutdown} 

0.00282 1.0000 3.5783 

{animals, kite, load transfer and retransfer} => {emergency 0.00212 1.0000 3.5783 
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shutdown} 

{instantaneous failure, kite, load transfer and 

retransfer} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{instantaneous failure, bird, kite} 
=> 

{emergency 

shutdown} 

0.00212 1.0000 3.5783 

{insulator defect, normal condition, 

instantaneous failure} 
=> 

{emergency 

shutdown} 

0.00282 1.0000 3.5783 

 
                        

  Table 4 - Association Rule Mining Results for Failures Related to "Vegetation" 

LHS  RHS Support Confidence Lift 

{fallen tree, lightning strikes, emergency shutdown} => {vegetation} 0.00212 1.0000 4.4842 

{fallen tree, temporary unidentified defect, 

emergency shutdown} 
=> 

{vegetation} 0.00212 1.0000 4.4842 

{fallen tree, emergency shutdown, load transfer and 

retransfer} 
=> 

{vegetation} 0.00212 1.0000 4.4842 

{material degradation, lightning strikes, bird} => {vegetation} 0.00212 1.0000 4.4842 

{large customer internal defect, instantaneous failure, 

bird's nest} 
=> 

{vegetation} 0.00212 1.0000 4.4842 

{large customer internal defect, bird's nest, bird} => {vegetation} 0.00212 1.0000 4.4842 

{bird's nest, bird, accidental third-party interference} => {vegetation} 0.00212 1.0000 4.4842 

{fuse switch defect, lightning strikes, bird's nest} => {vegetation} 0.00282 1.0000 4.4842 

{lightning strikes, bird's nest, bird} => {vegetation} 0.00494 1.0000 4.4842 

{temporary unidentified defect, bird's nest, load 

transfer and retransfer} 
=> 

{vegetation} 0.00282 1.0000 4.4842 

{temporary unidentified defect, bird's nest, bird} => {vegetation} 0.00212 1.0000 4.4842 

{bird's nest, bird, load transfer and retransfer} => {vegetation} 0.00353 1.0000 4.4842 

 
 

                      Table 5 - Association Rule Mining Results for Failures Related to "Fuse Switch Defect" 

LHS  RHS Support Confidence Lift 

{customer internal defect, accidental third-party 

interference, load transfer and retransfer} 
=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{customer internal defect, bird, accidental third-

party interference, load transfer and retransfer} 
=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{lightning strikes, emergency shutdown, broken 

jumper, bird, vegetation} 
=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{lightning strikes, instantaneous failure, broken 

jumper, bird, vegetation} 
=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{temporary unidentified defect, lightning strikes, 

instantaneous failure, broken jumper, bird} 
=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{lightning strikes, emergency shutdown, broken 

jumper, bird, load transfer and retransfer, 

vegetation} 

=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{temporary unidentified defect, lightning strikes, 

instantaneous failure, broken jumper, bird, 

vegetation} 

=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{lightning strikes, instantaneous failure, broken 

jumper, bird, load transfer and retransfer, 

vegetation} 

=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{temporary unidentified defect, lightning strikes, 

instantaneous failure, broken jumper, bird, load 

transfer and retransfer} 

=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{temporary unidentified defect, lightning strikes, 

instantaneous failure, broken jumper, bird, load 

transfer and retransfer, vegetation} 

=> 

{fuse switch 

defect} 

0.00212 1.0000 6.1609 

{lightning strikes, broken jumper, bird, vegetation} 
=> 

{fuse switch 

defect} 
0.00282 0.8000 4.9287 

{instantaneous failure, broken jumper, bird, 

vegetation} 
=> 

{fuse switch 

defect} 
0.00282 0.8000 4.9287 

 
By analyzing Table 3, it is evident that fallen trees and vegetation are frequent causes of 

failures related to emergency shutdowns. Table 4 highlights that fallen trees and adverse 
weather conditions (lightning strikes) significantly impact failures related to vegetation. Finally, 
Table 5 indicates that the primary causes of fuse switch defects are broken jumpers, 
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vegetation, and adverse weather conditions (lightning strikes). 
 

   4.3 Social network analysis 

To enhance the visualization of these findings, social network analysis (SNA) was applied, 
allowing a clearer interpretation of the association rules related to MPC failures. Figures 2, 3 
and 4 present the association rule mining results for emergency shutdowns, vegetation-
related failures, and fuse switch defects, respectively. 

 
 

 
Figure 2 - SNA for failures related to “emergency shutdown” 

 
 

 

 
Figure 3 - SNA for failures related to “vegetation” 
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Figure 4 - SNA for failures related to “fuse switch defect” 

 
In summary, the results indicate a strong correlation between failure types within each 

MPC category, with vegetation emerging as a predominant cause. Consequently, maintenance 
managers should implement preventive measures such as intensifying electrical grid 
inspections to identify critical points and schedule targeted interventions. 

 
5 DISCUSSION 
 

Based on the results of the association rules generated, maintenance managers decided 
to intensify on-site visual inspections across the entire network. Subsequently, preventive 
interventions were planned to proactively address failures, with a primary focus on the MPC 
category "vegetation." After one year of implementing a preventive maintenance plan 
specifically targeting vegetation-related failures, a comparative analysis of results (before and 
after implementation) was conducted. 

In Brazil, the National Electric Energy Agency (ANEEL) monitors two key electricity 
reliability indicators to assess the quality of distribution services: Equivalent Interruption 
Duration per Consumer Unit (EID) – expressed in hours and hundredths of hours; and 
Equivalent Interruption Frequency per Consumer Unit (EIF) – expressed as the number of 
interruptions and hundredths of an interruption. Both EID and EIF are cumulative annual 
indicators that aggregate interruption data across all consumers in a given year. Thus, these 
indicators were used to evaluate our preventive maintenance plan by comparing the first four 
months (January-April) of two consecutive years: the baseline period before implementation 
(Year 1) and the same seasonal period after implementation (Year 2). This seasonal 
comparison controls for annual variation while isolating the maintenance plan's effects. 
Figures 5.a and 5.b show the performance of EID and EIF, respectively.  

 

 
(a)                                                                                               (b) 

Figure 5 - Performance of the indicators: (a) EID and (b) EIF 
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The results show a cumulative reduction of 8.54% and 6.26% in EID and EIF, respectively, 

considering only the MPC vegetation as the failure cause. This outcome demonstrates the 
benefits of a systemic approach to failure analysis, as proposed in this study. More specifically, 
the findings reveal several managerial implications relevant to maintenance management in 
electrical distribution systems. 

The first implication concerns the prioritization of preventive actions based on data. 
Through Association Rule Mining, it was possible to identify critical patterns, such as the 
predominance of vegetation as the primary cause of failures. This enables managers to adopt 
a proactive approach, intensifying targeted inspections and planning preventive interventions 
before failures occur, thereby improving system reliability. 

Furthermore, the application of computational analysis techniques and artificial 
intelligence in maintenance management underscores the importance of digital 
transformation in the electricity sector. The use of algorithms to identify failures and define 
strategic actions can be expanded to other causes beyond vegetation, making the 
maintenance system increasingly efficient and data-driven. 

Additionally, reducing failures and power supply interruptions directly impacts consumer 
perception and regulatory indicators required by agencies such as ANEEL. This can result in 
an improved reputation for the utility company and a lower risk of regulatory penalties, 
corroborating the authors' claims (Rampini and Berssaneti, 2024) about the importance of risk 
management to implement decision-making that results in adequate control of maintenance 
operations. The reduction in interruption indicators (EID and EIF) confirms that a more 
targeted maintenance plan can optimize company resources (Dhewi et al., 2025). Instead of 
conducting generalized inspections and maintenance, the company can focus efforts on the 
most critical points, reducing operational costs and improving service performance. 

The results suggest that this model can be integrated into the company's strategic 
planning, enabling the execution of short-, medium-, and long-term action plans. Moreover, 
there is potential to expand the use of this technique to analyze other failure causes (such as 
mechanical failures or equipment defects), thereby increasing the robustness of the 
maintenance system. However, implementing this model requires that managers and 
technical staff be prepared to interpret failure analysis results and apply the 
recommendations in maintenance planning. This implies the need for continuous training to 
ensure that data-driven strategies are correctly implemented. 

 
6 CONCLUSION 
 

A power distribution system is inherently vulnerable to failures, which impact utility 
companies responsible for ensuring high-quality power supply. Studies and analyses aimed at 
improving reliability with minimal costs and optimal performance indicators are essential for 
effective maintenance planning in power distribution companies. Therefore, it is crucial for 
electricity distribution companies to implement effective anomaly management strategies. 

This study contributes to this objective by proposing a model capable of identifying 
variable dependency between failures related to each MPC and the critical points with the 
highest impact on the distribution system. Consequently, it was possible to strategically direct 
condition-based preventive interventions to the most critical segments within a given region. 

From a theoretical perspective, the analysis of a dataset comprising more than 7,000 
failure occurrences underscores the significance of data processing and analysis using 
computational techniques and Machine Learning (ML). This study contributes to this field by 
specifically addressing failures in power distribution networks. 

From a practical perspective, applying the proposed model to a real-world distribution 
system resulted in a reduction of continuity indicators when compared to the performance of 
the existing network configuration. The model enabled more precise planning and execution 
of maintenance activities, improving maintenance management efficiency and mitigating the 
financial losses associated with power outages. 

In summary, the results indicate that a data-driven approach not only improves reliability 
and operational efficiency but also generates competitive advantages, reduces costs, and 
strengthens maintenance management in the electrical distribution sector. 

This study offers important insights into power distribution failures while acknowledging 
certain limitations. Our analysis specifically examined the most frequently occurring failure 
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types during the study period, which means some rare but potentially significant causes may 
not have been captured. We selected the Apriori algorithm for its strengths in producing 
interpretable results, though we recognize that alternative approaches like FP-Growth or 
ECLAT could potentially reveal different patterns, especially when applied to more extensive 
datasets. For future research, important directions include investigating relationships 
between primary and secondary failure causes to improve prioritization, evaluating model 
performance over extended periods to assess robustness, comparing different association 
rule algorithms to optimize pattern discovery, and exploring the integration of environmental 
factors. These steps would further strengthen the practical application of these findings for 
utility companies. 
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