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1 INTRODUCTION 

Statistical Process Monitoring (SPM) has been a practice incorporated into quality management 
systems for many years. First developed by Shewhart in the 1920s, statistical process control 
brought innovation to the way processes are managed. The statistical identification of two different 
types of variability causes (random and special) at that time was groundbreaking and revolutionary, 
earning it a place as one of the key techniques in Total Quality Management (TQM). Its statistical 
principles are based on extracting random samples in subgroups at intervals. The assumption is 
that only random causes are present within the subgroups, and special causes are present between 
subgroups (Woodall and Montgomery, 2014). For a process to be in control, only random causes 
should be present. Thus, a quality characteristic is monitored over time by continuously assessing 
a location parameter (central tendency) and a scale parameter – variation ( Srikaeo and Hourigan, 
2002; Mohammadian and Amiri, 2012; Mukherjee, 2015; Goedhart and Woodall, 2022). 
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Despite the numerous published works, practical issues have more recently gained attention. 
There are situations where special causes are present but not practically significant. This is easily 
observed in processes with high capability indices, Cp and Cpk. Literature has solutions for this type 
of problem, known as acceptance charts or modified charts. Other recent solutions have been 
presented, incorporating Cp and Cpk indices into traditional Shewhart charts and introducing the 
concept of practical significance in statistical modeling in CUSUM and Weighted Moving Average 
charts. Woodall (1985) asserts that small changes in the process perceived over time may have little 
or no practical importance. Similarly, Mohammadian and Amari (2013), and Oprime and Mendes 
(2017), suggest that in highly capable processes, where natural variation is much smaller than 
specification limits, control limits should be relaxed, allowing the mean to vary within a certain 
range of values. 

The pioneer in this area was Freund, who introduced acceptance charts in 1957, as the author 
himself indicated, suitable for high-capability processes (Mhatre et al. 1981; Holmes and Mergen, 
2000; Mohammadian and Amiri, 2013; Woodall and Faltin, 2019). These authors contributed to the 
development and practical use of modified and acceptance control charts. However, a practical 
issue mentioned in the literature is the non-random behaviour of process measurements over 
time, the time trend, which could be seasonality, trend, or any other non-random profile. 
Understanding process profiles, when they exist, including the concept of practical significance, is 
an aspect that deserves attention from theorists and users of the technique. For this reason, new 
methods and types of control charts must be developed. According to Shper and Adler (2017), there 
is a potential existence of unknown (implicit) patterns in any given process. These patterns can 
either influence or not influence the process outcomes, but the challenge lies in the uncertainty of 
their presence. 

To overcome these limitations, more recent approaches, such as Profile Monitoring and specific 
techniques for location and variation control, offer more tailored solutions for efficiently detecting 
trends and seasonality in high-capability processes. Including these advanced methodologies 
allows for a more robust and sensitive understanding of changes in process behavior promoting a 
proactive response to non-random alterations. Kang and Albin (2000) pioneeringly argue that there 
are situations in which the quality of the process or product can best be characterized by a 
functional relationship between the response variable, corresponding to the quality characteristic 
of interest, and one or more explanatory variables.  

Linear temporal trends arise in the presence of uncontrolled factors and invalidate the 
assumption of independence among different values of the response variable. The effects of linear 
trends have already been studied in experimental design by Draper and Stoneman (1968), Cheng 
and Jacroux (1988), and Hilow (2013), for example. This way of considering the effects of linear 
trends in DoE changes the traditional proposal of randomization. We present this subject here to 
draw an analogy with control charts. Therefore, we can also mention here that a systematic order 
of sampling the process on a control chart should be considered in practice. 

Our motivation for addressing this issue stems from the challenges faced by engineers and 
production supervisors in effectively analyzing critical process characteristics using traditional 
Shewhart charts and capability calculations. The aim of this research is to utilize decision-
prescriptive models to identify solutions to novel problems or compare the efficacy of strategies to 
address a given issue. In addition, the study proposes the use of profile curves and statistical 
modeling based on the location control chart approach and residues to monitor processes with 
time trends. To achieve this goal, the paper will employ Design Science Research (DSR) 
methodology to solve practical problems through mathematical modeling. This approach 
emphasizes the importance of creating practical and effective solutions, as well as contributing to 
the advancement of knowledge in statistical process monitoring. 

This paper has the following structure, in addition to the introduction: Section 2 presents what 
we understand as processes with linear trends, adjustments of a polynomial model, and analysis 
and monitoring of their residuals. Section 3 presents the research method. Section 4 introduces 
the results of the monitoring model based on the profile and location control chart, exploring 
theoretical and practical implications of the developed study. Finally, Section 5 provides the 
conclusions regarding the proposed approach. 

2 EFFECTS OF LINEAR TRENDS AND RESIDUAL MONITORING 

2.1 Contextualization of the problem of Linear Trend Effects in manufacturing processes 

Shper and Hard (2017) bring an interesting discussion about the importance of temporal order 
as an aspect to be considered in Phase I implementation of control charts for process monitoring. 
According to these authors, this aspect is often overlooked in the literature because there are 
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situations where processes exhibit intrinsic trends or seasonality. From a practical standpoint, such 
temporal trends may be acceptable. 

In Phase I analysis, data is used retrospectively to assess process stability and establish limits 
that will later be used in Phase II for prospective monitoring. In Shewhart charts, any non-random 
behavior indicates the presence of special causes. Shper and Hard (2017) argue that patterns exist 
in all real-world processes, but sometimes their influence may be small enough to ignore. However, 
in practice, there are cases where non-random trends are relevant and easily identified or known 
beforehand. 

We often encounter situations where engineers attempt to apply the traditional control chart to 
processes with linear trends, i.e., without randomness. When this happens, capability studies are 
compromised. The method of estimating the process standard deviation must be considered from 
the perspective of the analyzed phenomenon. There are many practical constraints and 
considerations when applying control charts in the presence of temporal trends or non-random 
events. The practical sense and the impact of linear trends are crucial for practitioners. Woodall 
(1985) mentioned that small changes in the process, observed over time, may have little or no 
practical significance.  

This view is supported by Mohammadian and Amari (2012) suggest that in highly capable 
processes, where natural variation is much smaller than specification limits, the control limits 
should be relaxed, allowing the mean to vary within a certain range of values. Similar arguments 
are found in Kuiper and Goedhart (2023) for CUSUM and EWMA charts. Practical considerations 
must be taken into account when using control charts. In the words of Woodall and Faltin (2019), a 
slight deviation should not always be considered an out-of-control situation. From a practical 
standpoint, even the presence of linear trend effects, if they do not produce significant impacts, 
can be deemed acceptable as long as they are monitored.  

Building upon this perspective, recent research highlights the potential of auxiliary information-
based (AIB) charts (Aslam et al., 2022), to enhance detection power, especially in scenarios involving 
small shifts. These developments reflect a growing consensus that monitoring strategies must be 
adapted to reflect the inherent characteristics of industrial processes, particularly those governed 
by deterministic structures such as tool wear or gradual equipment drift. 

In response to this need, various authors have contributed to expanding the theoretical and 
practical frameworks for monitoring such systems. For instance, profile monitoring has emerged 
as a promising alternative. Pioneering studies by Kang and Albin (2000) and Colosimo and Pacella 
(2010) highlight the effectiveness of modeling quality characteristics as functions of one or more 
explanatory variables. This approach has been further validated by Noorossana et al. (2011) and 
Eyvazian et al. (2011), who demonstrate the usefulness of regression and residual analysis in 
capturing nonlinear or structured variation in process data. 

Moreover, the linear temporal trends arise in the presence of uncontrolled factors and 
invalidate the assumption of independence among different values of the response variable (while 
the independence of control variables is guaranteed by the orthogonality of design matrices). The 
effects of linear trends have been studied in experimental design (Draper and Stoneman, 1968; 
Cheng and Jacroux, 1988; Hilow, 2013; Pureza et al., 2018). This way of considering linear trend 
effects in Design of Experiments (DoE) alters the traditional randomization approach.  

In summary, statistical monitoring advocates for hybrid models that integrate traditional 
process monitoring techniques with regression, profile modeling and practical significance 
thresholds. These approaches not only increase robustness in detecting meaningful variations but 
also align monitoring practices with the operational realities of high-precision and non-stationary 
processes. 

The following subsections provide a more detailed theoretical foundation for the models 
proposed in this study to integrate temporal patterns and profile behavior into statistical process 
monitoring.  

2.2 Approach for Monitoring Processes with Time Trends Using Residual Control Charts 

Residual analysis plays a fundamental role in evaluating the adequacy and accuracy of fitted 
regression models. It enables the identification of discrepancies between model predictions and 
observed data, thus supporting model refinement (Altun, 2020; Montgomery, 2019; Box et al., 
1978). When the underlying assumptions of the model are satisfied, residuals are expected to 
exhibit random variation with a mean of zero, or approximately zero, in empirical applications.  

In this context, control charts provide a complementary analytical approach by allowing residual 
behavior to be monitored over time. If the residuals remain randomly distributed and within control 
limits, the model is deemed appropriate for practical use. Consequently, the model can be 
employed to determine whether a process remains in control or has deviated from its expected 
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behavior, based on the accuracy of the estimated profile (Pereira et al., 2020). 
Control charts that incorporate linear trends are often appropriate for practical applications for 

two key reasons: (a) they tend to exhibit high process capability, which can be easily assessed by 
comparing engineering tolerances with process variability. This capability can be numerically 
verified by estimating the residual standard deviation, which reflects variability arising from 
unknown or uncontrolled factors. Such estimation is straightforward when using linear regression 
techniques; and (b) the dominant sources of process variability are known and manageable. 

Processes affected by tool wear exemplify the type of scenario addressed in this study. In these 
cases, while short-term variability tends to remain within permissible limits, tool degradation over 
time leads to a gradual upward shift in the process mean, resulting in systematically larger 
measurements. Typically, capability indices such as Cp and Cpk remain high throughout the 
process—often exceeding the commonly accepted threshold of 1.33. When the wear rate is known, 
control limits can be adjusted to follow the wear trend line (Montgomery, 2019), such that 
fluctuations within these adjusted boundaries indicate a process under control. 

Woodall (1985) emphasized that small process changes observed over time may lack practical 
significance. In a similar vein, Mohammadian and Amari (2012) argue that in highly capable 
processes, where natural variability is substantially smaller than the specification limits, control 
limits can be relaxed, allowing the process mean to fluctuate within a specified range without 
compromising quality. 

Regression control charts can also be adapted to address tool wear problems. In such cases, 
both the wear rate and the residuals can be monitored jointly, allowing for control of the wear rate 
and the variation around each point due to random causes. Residual charts should always be 
examined to validate a regression model. One alternative for analyzing the model is residual 
scaling, calculated as: 𝑑𝑖 =

𝑒𝑖

𝜎̂
, where 𝑑𝑖  is the value of the scaled (or standardized) residual for the 

residual 𝑒 at point 𝑖. These residuals have a mean of zero and a variance of approximately one, 𝜎̂ is 
the estimated standard deviation of the residuals. Most of the standardized residuals should fall 
between -3 and 3.  

As a tangible illustration of this real-world problem, we present a comprehensive study of a 
machining process, where the manufactured product at this machining center is designed to meet 
specifications of 65.6 + 0.2 millimeters. This case illustrates the significant impact of trends, as 
depicted in Figure 1. From the perspective of the classical approach, this is an unstable process, 
therefore out of control, as it does not exhibit random behavior. However, from a practical 
standpoint, it is a highly capable and in-control process. Despite having a systematic trend over 
time, due to the presence of a known source of variation, this process can be considered stable if 
this trend reproduces over time. Another important point, which aligns with the assertions of Shper 
and Adler (2018), is that statistical monitoring and capability studies cannot be determined by the 
classical approach, as the sample is not random. 

 

 

Figure 1 - Samples of 115 parts extracted sequentially 

 
 
The data plotted on the Y-axis, as indicated in Figure 1, represents the measurements of the 

piece in millimeters obtained as a function of the production order indicated on the X-axis. The first 
piece produced (x=1) had a Y-value of 65.737, and the 115th piece had a Y-value of 65.666. 
Processes with the characteristics shown in Figure 1 should have a different treatment from the 
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approach of Shewhart charts. Monitoring for these cases can consider three measures: i) 
monitoring of residuals due to unidentified random causes; ii) monitoring of the adjusted 
polynomial profile; and finally; iii) monitoring of the angular coefficient derived from the rate of 

variation of Y with respect to production sequence X ( lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0

𝑥−𝑥0
). 

The first step is to develop a mathematical model that can be used to infer the response from 
a given combination of factor values. If 𝑋𝑖  are known quantities for each experimental run, models 
with p parameters are generally represented by a multiple regression model. For the case of Figure 
1, we can consider that the independent variable is associated with time t, due to the sequential 
order of process sampling. Fitted to data similar to that in Figure 1, a statistical model would be a 
polynomial of the form: 

 
                                       𝜇̂(𝑌|𝑥0) = 𝛽0 + 𝛽1𝑋0 + 𝐵11𝑋0

2                                      (1) 

 
Considering X as an integer ranging 1 ≤ 𝑋 ≤ 𝑚 (where 𝑚 represents the total number of 

measured pieces), the production sequence would act as an auxiliary predictor variable of the 
inspected quality characteristic. We should consider that the adjustment of the mathematical 
model will be suitable to establish the relationship between the dependent variable Y (the quality 
characteristic) and the independent variable X (which is the manufacturing order of the pieces). In 
this case, the error (or residual) represents the variability due to unknown causes, with a Gaussian 
(normal) probability distribution, with zero mean and standard deviation  𝜎𝑒. As already known, the 
random error is obtained by the difference between the observed value of Y for a given value of X 
minus the predicted value, 𝜇̂(𝑌|𝑥0 ). Thus, the estimated standard deviation of the variability due to 

random causes is easily calculated by: 
 

                                                       𝜎̂𝑒
2 =

∑ (𝑌𝑖−𝑌̂𝑖)2𝑛
𝑖=1

𝑚−𝑝
                                               (2) 

 
Where 𝑌̂𝑖 = 𝜇̂(𝑌|𝑥0) is the expected mean value predicted by the model, p is the number of 

estimated parameters of the regression model. In the example, there are three estimated 
parameters. We can then apply the classical approach of Shewhart charts for the upper and lower 
control limits of the residuals using variance control chart, obtained respectively by: 𝐿𝐶𝐿 =
𝜑𝑚−1,𝛼 2⁄

2

𝑚−1
𝜎̂𝑒

2  and 𝑈𝐶𝐿 =
𝜑𝑚−1,1−𝛼 2⁄

2

𝑚−1
𝜎̂𝑒

2. Actually, 𝜑𝑚−1,𝛼 2⁄
2  and 𝜑𝑚−1,1−𝛼 2⁄

2   denote the 𝛼
2⁄  quantile and 

1 − 𝛼 2⁄  quantile, respectively, of the distribution of a chi-square variable with 𝑚 − 1 degrees of 
freedom. 𝐿𝐶𝐿 is Lower Control Limits, UCL is Upper Control Limits, 𝛼 is significance level. Since 𝜎̂𝑒

2 
is an estimated parameter, 𝐿𝐶𝐿 and 𝑈𝐶𝐿 are also estimated control limits (𝐿𝐶𝐿̂;𝑈𝐶𝐿̂).  

Generally, for a Type I error of 𝛼 =0.0027 (0.27%). The residuals are iid normal random variables. 
In Phase II, any change in one of the parameters of the model from equation 1 adjusted to the data 
in Phase I would be detected in the residual plot. Considering that the random error 𝑒𝑖 =
(𝑌𝑖 − 𝑌̂𝑖) has a normal distribution with zero mean and standard deviation 𝜎𝑒 , 𝑁~(0, 𝜎𝑒) and they are 
independent, where i = 1, 2, ..., m. Assuming that the mean is known and zero and 𝜎𝑒 is estimated 
by Equation 2, the process is under control when the residual is within the control limits.  

However, in practice, we estimate the mean error using Equation 3 by: 

 

                                             𝑒̅ =
1

𝑚
∑ 𝑒𝑖

𝑚
𝑖=1 ,                         (3) 

 

Also, the mean error is estimated using the variance of the residuals with Equation 3.  However, 
we scaled (standardized) residual by 𝑑𝑖 =

𝑒𝑖

𝜎̂
 (see section 2.2), so that the control limits are calculated 

by: Center Line, 𝐶𝐿 =
𝑒̅

𝜎̂𝑒
, 𝑈𝐶𝐿 = 𝐶𝐿 +  𝐾𝜎̂𝑟 and 𝐿𝐶𝐿 =  𝐶𝐿 −  𝐾𝜎̂𝑟  , where 𝜎̂𝑟 is the estimated standard 

deviation of the residual, which is approximately 1, and K=3 (standard deviation number). For the 
case, 𝐶𝐿 = 0.407, 𝐿𝐶𝐿 = −2.58, 𝑈𝐶𝐿 = 3.39, 𝜎̂𝑟 = 0.9945. The residual control chart presented in 
Figure 2 utilizes standardized residuals, as recommended in the literature, to reduce the influence 
of differing variable scales and ensure comparability (Montgomery, 2019). As shown in the figure, 
one observation lies outside the control limits, suggesting the presence of a special cause that 
warrants further investigation.  
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Figure 2 - Scores Residual Control Chart from figure 1. 

2.3 Profile monitoring and modified location control chart 

The profile model in Figure 1 illustrates how the peculiarities of each process must be 
considered when designing a monitoring method. In the previous section, we used residuals to 
analyze and monitor sources of variation. We also proposed equations to assess the performance 
of residual control charts, adapting them from existing literature. Monitoring residuals has been 
presented in the literature for profile cases and, therefore, validated. An analysis and discussion on 
this matter were presented by Noorossanaet al. (2011) and Eyvazian et al. (2011). Colosimo and 
Pacella (2010) expanded the range of profile monitoring options. These authors demonstrate that 
most approaches to profile monitoring proposed in the literature share a typical structure, 
consisting of: i) identifying a parametric model of functional data; ii) estimating the model 
parameters; and iii) designing a multivariate control chart for the estimated parameters and a 
univariate control chart for residual variance. The proposed approaches can then be classified 
according to the type of application faced (i.e., calibration study, process signal, or monitoring of 
geometric specifications) or the modeling approach considered (mainly linear regression or 
approaches for reducing multivariate data, such as principal/independent component analysis). 

Given that 𝐸(𝜇̂(𝑦|𝑥)) = 𝜇(𝑦|𝑥) and the estimator for 𝜎𝑒 is 𝜎̂𝑒 = √
∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

𝑛−𝑝
 we can estimate for 

each point of X the estimated control limits for Y as follows: 
 
                              𝐿𝑆𝐶̂(𝑦|𝑥0) = 𝜇̂(𝑦|𝑋0) + 𝐾𝜎̂𝑒                                                 (4) 

 

                      𝐿𝐼𝐶̂(𝑦|𝑥0) = 𝜇̂(𝑦|𝑋0) − 𝐾𝜎̂𝑒                                                         (5) 

 
Since there are m points in X for which control limits are estimated for Y, theoretically, there is 

a heightened probability of a point falling randomly outside the control limits, consequently 
increasing the risk of Type I error. This suggests that the percentile of the standardized normal 
distribution used to calculate K should be adjusted. When multiple hypotheses are tested, the 
likelihood of observing a rare event increases, thereby elevating the probability of erroneously 
rejecting a null hypothesis (i.e., committing a Type I error). To address this concern, the Bonferroni 
correction rule for dependent events is utilized to establish an actual false alarm rate that does not 
surpass a predefined threshold value. 

In obtaining Bonferroni intervals, it is not necessary for all separate confidence coefficients 
[100(1 − 𝛼𝑖)%, 𝑖 = 1,2, . . , 𝑚 ] to be equal, but rather that 𝛼 = ∑ 𝛼𝑖

𝑚
𝑖=1 . Thus, 𝛼′ =

𝛼

𝑚
, recalling that m is 

the number of points in the regression, α is the Type I error of the control chart, and 𝛼′  is the 
corrected value of the Type I error for each Y point estimated by the regression, which corresponds 
to the new 𝐾′ of the standard normal distribution percentile, as mentioned by Chakraborti (2000), 
Chakraborti (2000), and Jardim et al. (2020). And the ARL can be calculated by: 
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ARL = ∫ ∫
1

1−(∅i(
W

√m
+K′U−δ√n)−∅i(−

W

√m
−K′U−δ√n))

m f(u)φ(w)dudw
∞

0

∞

−∞
                    (6) 

 

Figure 3 illustrates how the profile chart would appear when adopting the Location Control 
Chart method for data from figure 1. Figure 3 illustrates the central line along with the upper and 
lower control limits of the curve that represents the relationship between the production sequence 
and the diameter measurement of the part. 

 

 

Figure 3 - Profile Monitoring Control Chart Data of Figure 1. 
 

2.4 Control Charts and Performance 

The implementation of Statistical Process Monitoring (SPM) traditionally involves two phases 
(Jones-Farmer et al., 2017). Phase I focuses on defining the quality characteristic and on collecting 
and analyzing data to estimate statistical parameters, such as the process mean and the standard 
deviation of the mean, which will subsequently be monitored using control charts. Ideally, in this 
phase, both the target parameter and its standard deviation are known. However, statistical 
parameters are not always available a priori. In traditional Shewhart control charts, two parameters 
are monitored statistically: the mean and the standard deviation.  

Based on the availability of these parameters, four scenarios or cases can be considered: a) Case 
1: both the mean and standard deviation are known – Known/Known (KK); b) Case 2: the mean is 
unknown and the standard deviation is known – Unknown/Known (UK); c) Case 3: the mean is 
known and the standard deviation is unknown – Known/Unknown (KU); d) Case 4: both the mean 
and the standard deviation are unknown – Unknown/Unknown (UU). When one or both parameters 
are unknown, Phase I is used to estimate them. Consequently, the upper and lower control limits 
(UCL and LCL, respectively) are calculated based on these estimates. 

The expected control charts’ performance reflects 𝛼 e β errors; 𝛼 error is the false-positive rate 
(when the process is in control, but the value found for the monitored parameter is out of limits). 
β error is the false-negative rate (when the process is out of control, but the value found for the 
monitored parameter falls within limits). Thus, the smaller the accepted α error, the greater the β 
error. For h = 3, known parameters and process under control, one point in 370 on average falls 
outside the calculated limits. 

The most common measure for calculating the control charts’ performance is the Average Run 
Length (ARL), where the number of process samples must be evaluated until a point outside the 
control limits occurs. Due to this characteristic, the sequence size (Run Length – RL) is a random 
variable that follows a geometric distribution with mean 1/p, where p is the probability of a 
successful event (Acosta-Mejia, 1999). For process situations under control, this value is expected 
to be as high as possible. In Equation 7, p = α, and usually α = 0.0027 in control charts. Thus, 𝐴𝑅𝐿0= 
370 for a process with known µ and σ. 

                                                          𝐴𝑅𝐿0 = 1/α                                                        (7) 
In out-of-control process situations, such value is expected to be as low as possible, quickly 

identifying abnormal variations in the process. In this case, the power of the test is used to calculate 
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the ARL shown in Equation 8 (Sobue et al., 2020; Jones-Farmer et al., 2014; Haridy et al., 2011; Jensen 
et al., 2006; Woodall, 1985). It is important to emphasize that in Phase I (retrospective phase), the 
main interest is to understand better the process and evaluate its stability. In contrast, Phase II 
(prospective phase) involves controlling a process by historical data analysis eliminating any 
attributable variation causes (Chakraborti et al., 2009). 

 
             𝐴𝑅𝐿𝑂𝑂𝐶  = 1/(test power) = 1/ (1- β)                             (8)                        

3 METHOD 

In this article, the problem addressed is not fundamentally theoretical but rather empirical, 
requiring the adaptation of the traditional Shewhart control chart approach. The main 
characteristic of the problem here is that the process studied does not exhibit stationary behavior, 
a foundation of the classical approach, which aims to keep the process stationary over time. 

The process intrinsically displays non-stationary behavior, necessitating an adaptation of the 
known monitoring method. Two approaches were applied. The first is a prescriptive approach, 
where we developed analytical models considering the effects of linear trends, natural to the 
process, and not viewed as a special cause to be corrected. This modeling strategy aligns with 
approaches in the literature that jointly optimize production and quality control systems (Liao et 
al., 2017; Zhang et al., 2022). These prescriptive frameworks have been increasingly applied to 
scenarios such as predictive maintenance, process monitoring, and hybrid classification problems 
in operations research (Yan et al., 2024). The second is the implementation of the Design Science 
Research (DSR) solution, which is particularly suited for developing and evaluating artifacts that 
solve real-world problems (Hevner et al., 2019). DSR enables a structured process of problem-
solving by integrating theory and practice, emphasizing relevance and rigor in both the artifact 
design and its contextual application (Carstensen & Bernhard, 2018). In this study, DSR is used to 
guide the development of new control chart models adapted to processes with time trends, 
enabling iterative refinement and evaluation based on empirical evidence. 

In summary, our research was conducted using prescriptive decision models and the Design 
Science Research approach to identify solutions for real and complex problems. Additionally, 
modeling and simulation methods were used to support the development, analysis, and testing of 
the model, which was classified as an artifact. 

Thus, we generated innovative solutions for a lesser-studied problem: processes with linear 
trend effects, which are, therefore, non-stationary. The created and tested artifacts, namely 
statistical models and methods were designed to solve the specific problem. The artifacts were 
evaluated in terms of their effectiveness and usefulness in real contexts. 

From a methodological standpoint, we followed these steps: i) extracted a sample of 125 pieces 
in sequence and plotted this data in time order; ii) fit a second-degree polynomial to the data to 
interpolate linear trend effects; iii) calculated the residuals of the fitted model to establish 
stationarity; iv) adjusted the control chart limits for the residual plot, modeled the residuals chart, 
and evaluated its performance in terms of ARL; v) developed the temporal profile model and 
evaluated its performance; vi) derived the rate of change function for the process by differentiating 
the profile function; vii) proposed as a final solution the creation of the Modified Control Chart 
applied to the Profile as a solution to the studied problem. 

4 EMPIRICAL APPLICATION: A REAL CASE ANALYSIS 

4.1 Modeling of control charts for residuals 

To adjust an empirical model to the data in the graph of Figure 1, the Maple program was used 
with the 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝐹𝑖𝑡(2, 𝑋, 𝑌, 𝑣) function, which resulted in the following Equation 9.  

 
                                     y = 65.74 − 0.001339𝑣 + 6.252 ∗ 10−6𝑣2                                            (9) 
 
Table 1 presents the outcomes of significance tests conducted on the model parameters, 

affirming their statistical significance. The coefficient of determination (R-squared) for the model is 
0.9815, signifying a robust explanatory power. Additionally, the estimated residual standard 
deviation stands at 0.00301, underscoring the model's accuracy in predicting observed data points. 
Furthermore, the standard errors of the model parameters were determined 
[0.000856963;  0.0000341;  2.8481 10−7]. 
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     Table 1 - Coefficients of model 

 Estimate Std. Error t-value P(>|t|) 

Parameter 1 65.7402 0.0008569 76713.0 0.0000 

Parameter 2 -0.0013 0.0000341 -37.1482 0.0000 

Parameter 3 𝟔. 𝟑 ∗ 𝟏𝟎−𝟔 𝟐. 𝟖𝟒𝟖 𝟏𝟎−𝟕 19.2603 0.0000 

 
 
These findings collectively indicate the efficacy and reliability of the empirical model. The 

performance of these charts can be assessed using the Average Run Length (ARL), as indicated by 
Equation 10 presented below: 

 

                                  𝐴𝑅𝐿 =
1

1−Φ(𝐾−𝛿√𝑛)√𝑛+∅(−𝐾−𝛿√𝑛)
                                                  (10) 

 
Where Φ represents the cumulative distribution of the standard normal, K is the number of 

standard deviations, n is the sample size, and δ is the shift in the mean of the residuals when the 
process exhibits a new source of variability, altering the regression function profile. Additionally, 
we can develop new equations for the ARL considering the estimation errors of the mean of Y, 
𝜇̂(𝑌|𝑥0), for a given value of X, and the estimation error of the residual variance. Equation 11 refers 

to the second case (UK), as follows: 
 

                  𝐴𝑅𝐿 = ∫
1

[1−Φ([
𝑊

√𝑚
+𝛿√𝑛+ 𝐾])+Φ([

𝑊

√𝑚
−𝛿√𝑛− 𝐾])]

∞

−∞
𝜑(𝑤)𝑑𝑤                    (11) 

 
Where φ(w) is the probability density distribution of the standard normal, 𝑊~𝑁(𝜇 = 0;  𝜎 = 1), 

m is the number of samples of size n. In this case, the control limits are determined, and a process 

will be under control when 𝑒𝑖  ∈  (𝑒̅ − 𝐾
𝜎𝑒

𝑚
; 𝑒̅ + 𝐾

𝜎𝑒

𝑚
)= (𝐿𝐶𝐿̂; 𝑈𝐶𝐿̂) where 𝑒̅ is the mean of the residuals 

obtained by: 
 

                                                 𝑒̅ =
1

𝑚
∑ 𝑒𝑖

𝑚
𝑖=1                                                           (12) 

 
Given that m is the number of samples of size n. Considering that 𝜎𝑒 is estimated in the 

calculation of the control limits of the residuals (case KU), we can arrive at the following equation 
for the ARL, assuming that 𝑒𝑖~𝑁(0, 𝜎𝑒): 

 

                               𝐴𝑅𝐿 = ∫
1

1−Φ(𝑲𝑼−𝜹√𝒎)+∅(−𝑲𝑼−𝜹√𝒎)

∞

0
𝑓(𝑢)𝑑𝑢                                         (12) 

 
Where 𝑓(𝑢) = (𝑚 − 𝑝)𝑓𝑌2(𝑚 − 𝑝)𝑢) represents the unconditional average run length, and 𝑓𝑌2 

denotes the probability density function of the Chi-Squared distribution with 𝑚(𝑛 − 𝑝) degrees of 
freedom. 

Finally, considering that estimates of the mean of Y and the standard deviation (Case UU) of the 

residuals are also estimated, we have the following equations for the ARL in this case:  𝑃 (−
𝑊

√𝑚
−

𝐾𝑈 − 𝛿√𝑛 ≤ 𝑍 ≤
𝑊

√𝑚
+ 𝐾𝑈 − 𝛿√𝑛) , where 𝑊 =

√𝑚(𝑒̅−𝜇0)

𝜎𝑒
, it follows a n (0,1) normal distribution, and 

the probability function of 𝑈 is 𝑓(𝑢) = 𝑚(𝑛 − 𝑝)𝑓𝑌2 𝑚(𝑛 − 𝑝)𝑢). Thus, the unconditional average run 
length is the first moment (expected value) of the non-geometric unconditional run length (Jardim 
et al., 2020) presented in Equation 13 with the probability 𝑝(𝑊, 𝑈, 𝐾, 𝛿, 𝑚), it can be stated that the 
average run length ARL is given by: 

 

               𝐴𝑅𝐿 = ∫ ∫
1

1−Φ(
𝑊

√𝑚
+𝐾𝑈−𝛿√𝑛)+∅(−

𝑊

√𝑚
−𝐾𝑈−𝛿√𝑛)

𝑓(𝑢)𝜑(𝑤)𝑑𝑢𝑑𝑤
∞

0

∞

−∞
                         (13) 

 
Where 𝜑 denotes the pdf of a 𝑁(𝜇 = 0;  𝜎 = 1) random variable and 𝑓𝑌2(𝑦) is the density function 

of a chi-square distribution with 𝑚(𝑛 − 𝑝) degrees of freedom. 
The Equation 13 provides a means to assess the effectiveness of residual control chart 

performance across varying parameters, including the number of curves derived from 
experimental data (m), the sample size (n), and δ, which represents the number of standard 
deviations from the mean of the residual. While theoretically, the average residual is expected to 
be zero with a standard deviation of sigma, the polynomial curve serves as an estimation, 
suggesting that the average residual will approximate zero if the model is appropriately adjusted.  

Analysis of Table 2 reveals the Average Run Length (ARL) results, which offer insights into the 
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performance of the residual control chart. The table showcases the ARL values under different 
parameter settings, demonstrating the impact of m, n, and δ on the chart's sensitivity to detecting 
process deviations. When 𝛿 = 0, the process is considered to be in control. Conversely, when 𝛿 > 0, 
the process is deemed to be out of control. Accordingly, the values presented in Table 2 represent 
the in-control Average Run Length (ARL) for 𝛿 = 0 and the out-of-control ARL for 𝛿 > 0. It is important 
to note that higher ARL values indicate a lower probability of detecting an out-of-control condition 
prematurely, while lower ARL values reflect a greater sensitivity of the chart in identifying process 
shifts. For example, when m = 1, n = 50, and δ = 0, the ARL is 16,610, meaning that, on average, 
16,610 samples would be required to signal a change when no actual shift is present. As 𝛿 increases, 
the ARL values decrease, highlighting the increased responsiveness of the control chart to 
deviations in the process. 

These results underscore the critical role of parameter selection in enhancing the effectiveness 
of residual control charts for accurate process monitoring and quality assurance. 

 

      Table 2  ARL for residual control chart with K=3 

m n 𝜹 = 𝟎 𝜹 = 𝟎. 𝟐𝟓 𝜹 = 𝟎. 𝟓 𝜹 = 𝟎. 𝟕𝟓 𝜹 = 𝟏. 𝟎 

1 50 16610 3972. 62.10 1.208 1.006 

1 100 694.9 52.62 1.203 1.001 1.000 

1 150 334.6 9.167 1.017 1.000 1.000 

2 50 1137. 112.9 1.056 1.000 1.000 

2 100 355.8 9.495 1.078 1.000 1.000 

2 150 274.7 3.292 1.007 1.000 1.000 

3 150 276.3 2.605 1.004 1.000 1.000 

4 150 283.2 2.380 1.003 1.000 1.000 

8 150 308.5 2.125 1.002 1.000 1.000 

10 150 317.4 2.083 1.002 1.000 1.000 

 

Table 3 presents the performance of the proposed control chart based on Equation 13. The 
results report the Average Run Length (ARL) values under varying conditions, considering the 
number of samples (m = 1 or 2), sample sizes (n = 50, 100, 115, and 150), and different levels of 
mean shift (δ = 0.0, 0.25, 0.50 and 1.0). In this analysis, the statistical parameters were estimated 
using Equation 13, where the average value of each response variable Y was modeled as a function 
of the explanatory variable X, along with the corresponding residual standard deviation. When 
estimating residuals from a single profile (m = 1), the sample size must exceed 150 observations to 
reliably detect a mean shift of δ = 0.5. This requirement highlights a limitation in sensitivity when 
only one curve is used. However, when m = 2—meaning two profiles (or two observations of Y for 
each X)—the chart demonstrates improved sensitivity to small shifts in the mean. This indicates an 
enhanced ability to detect subtle process changes, reinforcing the benefit of multiple observations 
for more effective monitoring.  

Overall, the findings emphasize the importance of both the number of profiles and the sample 
size in determining the detection capability of the residual control chart. Increasing m contributes 
to more robust monitoring, particularly for identifying moderate to small process shifts. 

 
     Table 3 - ARL of Profile Control Chart 

m n k 𝜹 = 𝟎 𝜹 = 𝟎. 𝟐𝟓 𝜹 = 𝟎. 𝟓 𝜹 = 𝟏. 𝟎 

 

 

1 

50  

 

 

3 

11144 2478.3 4.302 1.000 

100 587.59 19.408 1.667 1.000 

150 307.11 4.3390 1.000 1.000 

115 440.61 10.601 1.012 1.000 

 

2 

50 798.52 50.609 1.827 1.000 

100 315.52 5.8914 1.011 1.000 

150 255.10 2.5412 1.000 1.000 

115 289.24 4.2842 1.000 1.000 
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4.2 Curve of tool wear rate 

Monitoring and controlling the variability of unidentified sources is recommended in control 
charts. In the case of Figure 1, we propose the control of standardized or non-standardized 
residuals together with monitoring the profile whose curve was fitted to the data by a second-order 
polynomial. However, it should be added that another characteristic related to the process 
efficiency is the tool wear rate, whose effect is measured by the first derivative of the fitted model. 

The derivative is given by the limit ( lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0

𝑥−𝑥0
) , where Equation 14 is as follows: 

 
                                   𝑑 = −0.126689 ∗ 10−2 + 0.19971 ∗ 10−4𝑣                                            (14)  
 
Where 𝑣 indicates the production sequence and 𝑑 represents tool wear rate. Figure 4 shows the 

consumption rate (in mm) and the limits determined from the standard deviation of the random 
error. It is observed that the tool wear rate is decreasing, with a higher rate in the production of the 
first piece. The purpose of this chart is to monitor process wear and establish a reference standard 
for resource, equipment, and machinery usage improvement projects. 

 

 
Figure 4 - Curve of tools wear rate (millimeter by piece). 

 
In order to determine the stability point of the fitted function, we derived the function and set 

it equal to zero, finding the minimum point at 115, which is the number of sampled pieces, 
indicating the need to stop the machine for adjustments. Considering the estimation errors of the 
polynomial parameters, the machine adjustment moment could occur between 108 to 126 pieces, 
as shown in Figure 4. These results were obtained from the standard errors of the parameter 
estimates for a 99% confidence interval. The functions fit the curves data from figure 4 are:  

 
                                    1. 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 = −0.0012669 + 0.000011 ∗ 𝑗                                   (15) 
 
                                   2. 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑛𝑒 = −0.001165 + 0.00000093 ∗ 𝑗                                    (16) 
 
                              3. 𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑛𝑒 = −0.001369 + 0.000013 ∗ 𝑗                                          (17) 
  
Where j represents the production sequence of pieces. In Figure 4, we have shown the 

simulation for curves with different parameter estimates of the mathematical model fitted by tool 
wear rate. The change in rate could indicate the presence of a special cause in the process. 
Therefore, we could use these tools to monitor the process along with residual and profile control 
charts. 

4.3 Modified control chart applied in profile 

According to Montgomery (2019) and Holmes and Mergen (2000), there is processes that, due 
to their nature, exhibit inevitable changes in the mean value of the quality characteristic of interest 
but still are capable of meeting the established specifications. This situation occurs when the 
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process standard deviation is very small compared to the width of the tolerance (i.e., the difference 
between the upper and lower specification limits). In terms of standard statistical process control, 
this process, although not necessarily in control, is capable of producing acceptable products that 
must be protected against rejection. Montgomery (2019) argues that, in achieving a high level of 
process capability, it is sometimes useful to relax the level of surveillance provided by standard 
control charts. 

Considering that, by observing Figures 1 and 3 and comparing the measurements with the 
specification (∅65.60+0.2), whose tolerance is 0.2 tenths of a millimeter, the process is highly 
capable. In this case, the estimated standard deviation of the residual was 𝜎̂𝑒 = 0.003 𝑚𝑚. With the 
aim of maximizing the use of tools, given that their wear occurs over time, the operational 
procedure is to adjust the machining process equipment close to the upper engineering 
specification limit. The proposal is to include acceptance control limits in the profile chart to 
parameterize the cyclical process adjustments. The basic concept behind the first approach, the 
modified ¯X chart, is to allow the process mean to shift in such a way that the fraction of 
nonconforming pieces produced does not exceed a specified value δ.  Freund (1957) provide a 
general discussion of this technique. Montgomery (2019) also provides an extensive reference on 
this technique from the statistical theory perspective. 

As mentioned earlier, it is considered that in the present case the quality characteristic is 
normally distributed with a mean 𝜇(𝑦|𝑥) and a variance of 𝜎𝑒

2. For a process with bilateral 

specification limits, in order to produce pieces with a nonconforming fraction lower than δ, the 
process mean μ can only shift within de 𝜇𝐿 and 𝜇𝑈, as shown in Figure 5. 

 
 

 
Figure 5 -  Distribution of normal quality characteristic. Source: Adapted of Chang e Gan (1999) 

 
Thus, the control limits are obtained by:  
 

                                                 𝐿𝐶𝐿 = 𝐿𝑆𝐿 + (𝑍𝛾 −
𝑍𝛼/2

√𝑛
) 𝜎𝑒                                                      (18) 

 

                                                𝑈𝐶𝐿 = 𝑈𝑆𝐿 − (𝑍𝛾 −
𝑍𝛼/2

√𝑛
) 𝜎𝑒                                                (19) 

 
Where 𝛾 represents a fraction of nonconforming items, α the Type I error, n is the sample size 

for the mean estimation, Z the standard normal percentile, Lower Specification Limits (LSL), and 
Upper Specification Limits (USL). Given that the machine is adjusted from the upper specification 
limit, and for a minimum Cpk, as a customer requirement, it is suggested that the process be 

adjusted by the value given in Equation 20.  How 𝐶𝑝𝑘 = 𝑚𝑖𝑛 (
𝑈𝑆𝐿−𝜇(𝑦|𝑥)

3𝜎𝑒
,

𝜇(𝑦|𝑥)−𝐿𝑆𝐿

3𝜎𝑒
 ), we have obtained 

following equations: 
 
                                             𝜇(𝑦|𝑥) = 𝐿𝑆𝐿 + 𝐶𝑝𝑘. (3𝜎𝑒)                                               (20) 

 
                                         𝜇(𝑦|𝑥) = 𝑈𝑆𝐿 − 𝐶𝑝𝑘. (3𝜎𝑒)                                                  (21) 

 
For case, taking 𝐶𝑝𝑘 = 1.67 we have 𝛾 of 0.27 ppm (parts per million) with 𝑍𝛾 = 5.0, 𝜎̂𝑒 = 0.003, 

and USL=65.80 and LSL=65.60, using of Equation 20 and  21 we have the  minimum and maximum 
limits value to 𝜇(𝑦|𝑥): 𝐿𝐶𝐿 = 65,62, 𝑈𝐶𝐿 = 65,78. The adjustment and regulation mechanism for this 

specific process is based on the UCL and LCL. Figure 6 shows how the proposed chart would look 
with the modified control limits in some simulated cases.  

https://doi.org/10.14488BJOPM.2417.2025


Control charts for monitoring process with time trend: using monitoring random source, profile monitoring and modified locati on chart 

 

Brazilian Journal of Operations and Production Management, Vol. 22, No. 3, e20252417 |  https://doi.org/10.14488BJOPM.2417.2025          

 

13/16 

 

 

 

Figure 6 - Control limits for modified and profile control char. 

4.4 Exploring theoretical and practical implications of the developed study 

A challenge for the process owner described so far is to determine the process capability indices, 
Cp and Cpk. Explaining these capability indices using traditional concepts is not possible, as the 
quality characteristic Y does not follow a normal distribution, and the process is subject to mean 
variation over time. Nemati Keshteli et al. (2014), at the time, pointed out that there were few 
articles on process capability indices in profiles, and most of them focused on process capability 
indices applied to linear profiles. Since then, several studies have been conducted to propose 
process capability indices for profiles with univariate and multivariate response data (Maleki et al., 
2017). Nemati Keshteli et al. (2014) proposed calculating Cp and Cpk indices based on traditional 
methods in univariate models. We propose to calculate Cp based on the standard deviation of the 
residual, and Cpk at the extremes of the profile, especially at the beginning of production, where 
the equipment is adjusted under conditions that maximize the efficient use of production 
resources. Thus, we propose the following calculations for Cp and Cpk using Equations 20 and 21, 
with Equation 23 derived from Equation 21. 

 

                                                𝐶𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎̂𝑒
                                                   (22) 

                                            𝐶𝑝𝑘 =
𝑈𝑆𝐿−𝜇̂(𝑦|𝑥0)

3𝜎̂𝑒
                                              (23) 

 
Where 𝑥0 represents the value of the predictor variable in the worst condition that has the 

highest probability of producing out-of-specification parts; in this case, 𝑥1, which is the first piece 
produced and where it represents the value of the mean of 𝑌 that maximizes the use of the tooling. 
For the present case, we can consider that the random variability is estimated by the standard 
deviation of the residual. Thus, the potential capability, obtained by Equation 23, for the process is 
11.1, which is well above the 1.67 recommended for critical characteristics. If we adjust the process 
under the conditions predicted in Equations 22 and 23, for a Cpk=1.67, the process should be 
adjusted so that the mean of Y is 65.78 and 65.62 mm. 

The development provided elements for the construction of a method for monitoring processes 
that exhibit some effect of linear trend, as is the case of the example presented here. It is necessary 
to consider that these processes with this characteristic have a normal distribution of residuals, 
possess high capability, and fit a trend curve. 

There are indications in the literature on how to proceed in these cases; for example, 
Montgomery (2019) suggests monitoring the coefficients of the regression model, as well as 
monitoring the residuals through a variance chart or standardized residuals. Recent articles explore 
new approaches for monitoring processes with linear regression or profiles. Abbas et al. (2023) 
propose auxiliary information-based (AIB) control charts, which have been shown to be efficient for 
early detection of changes in process parameters. Regarding profile charts, Woodall and 
Montgomery (2014), Noorossana et al. (2011), and Woodall et al. (2004) provide an overview of 
some of the general issues involved in using control charts to monitor linear and nonlinear profiles. 

Shper and Adler (2017) address the use of control charts in situations similar to the example 
presented. The case studied in this article clearly exhibits a temporal trend due to identifiable 
causes, however, acceptable for process performance. The first step in implementing statistical 
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monitoring in situations with linear or nonlinear trends is to understand and adjust a trend curve 
model. Thus, it is possible to predict the variable of interest as a function of time or an independent 
variable. The importance of understanding the temporal behavior of the process characteristic is 
indicated in the literature by Shper and Adler (2017). 

The application of support variables through linear regression models, another topic 
highlighted in the literature, reinforces the need to monitor the variability of random sources of 
unidentified causes, called residuals in regression analysis. Monitoring the curve profile along with 
the residuals are complementary methods and recommended in the classical Shewhart approach. 
However, for better prediction of results, we include in the development of the artifacts the use of 
the first derivative for two purposes: i) anticipate changes in the curve profile due to identifiable 
causes, ii) identify minimum or maximum points of the curve, which can be useful in evaluating 
overall process performance. 

Another monitoring tool in practical situations is the use of location control charts and modified 
charts, which determine the time of equipment and tool adjustment, in order to ensure minimum 
acceptable capability, as well as maximizing the use of these resources. 

5 CONCLUSION 

The artifacts developed from a real-world problem, which involved the application, modeling, 
and performance evaluation of control charts in processes with linear trend effects, aimed to 
contribute to the development of the field of knowledge in statistical monitoring, focusing on 
practical issues. We innovated in this work by fully applying widely known methods, consolidating 
a comprehensive approach to the problem that included the use of profile control charts, 
monitoring of regression model parameters, application of the location control chart approach, 
acceptance charts, and capability calculations in profiles. We analytically assessed the performance 
of these charts through ARL, and through these analyses, we indicated the effects of sample sizes 
used in phase I to estimate the parameters of the regression model on performance in phase II.  

This article proposes an innovative approach to monitoring processes with temporal trends, 
using profile curves and statistical modeling based on location and residual control charts. By using 
prescriptive decision models and the DSR approach, we sought to solve practical problems and 
contribute to the advancement of knowledge in statistical process monitoring. The results have 
demonstrated that processes with linear trends can be adequately monitored and controlled, even 
when exhibiting non-random behavior over time. The study also offers a theoretical and practical 
framework for the implementation of these techniques. This artifact contributes with a more 
effective approach to identifying and managing changes in industrial processes. Finally, the 
concluding remarks emphasize the importance of integrated and adaptable approaches to process 
monitoring, with an emphasis on the application of advanced statistical methods and a detailed 
understanding of the characteristics of the process at hand. 
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