
A Structural Equation Model For Adopting Additive Manufacturing in the Footwear Firms Supply Chains  

 

Brazilian Journal of Operations and Production Management, Vol. 22, No. 1, e20252322 |  https://doi.org/10.14488BJOPM.2322.2025       

 
1/14 

 

  

 

 

 

 

RESEARCH PAPER 

 

A Structural Equation Model For Adopting Additive Manufacturing in the 

Footwear Firms Supply Chains  

    Tekalign Lemma1 , Endalkachew Mosisa Gutema1 , Hirpa G. Lemu2 , Mahesh Gopal1  

1Wollega University (WU), Nekemte, Ethiopia. 
2University of Stavanger (UiS), N-4036 Stavanger, Norway. 

 

 

 

1 INTRODUCTION 

 

The supply chain complexity (SCC) in manufacturing firms is caused by the process, 
product, market demand, and suppliers, which result in higher product manufacturing 
costs and lower firm profit. Consequently, it clears the benefits and drawbacks of 
switching to additive manufacturing (AM). A network of suppliers in a supply chain is not 
a simple linear structure; even minor changes can cause chain reactions. 
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ABSTRACT 

Goal: The objective of this research is to present a theoretical framework and explore how additive 

manufacturing (AM) techniques affect supply chain complexity (SCC) in the footwear sector. 

Design/Methodology/Approach: This study developed theoretical framework that includes AM best practices 

and SCC through extensive literature review. Using 1-5 likert scale surveys, data were gathered from 205 

professionals working in 29 Ethiopian footwear industries in the period October 20 to December 23, 2023. The 

collected questionnaires were tested for reliability and validity, measurement and structural model fit test 

were checked using confirmatory factor analysis. Structural Equation Modeling using AMOS v23 was used to 

evaluate the proposed correlations. 

Results: The confirmatory factor analysis test result revealeld that measurement and structural equation 

model fit test fulfill the model fit test requirements, i.e. χ2/df < 5, CFI, GFI and TLI > 0.9, RMR and RMSEA < 0.08. 

The findigs of the study confirmed that additive manufacturing best practices (time, inventory, operation, and 

resource, energy and waste related factors) have positive effects on static and dynamic supply chain 

complexity. 

Practical implications: This study helps the firm to focus on adoptation of AM for improving supply chain 

complexity. Furthermore, this study extended earlier research in the domains of SCM by building a theoretical 

framework that connects AM best practices with supply chain complexity factors. 

Originality/value: This work bridges the scientific knowledge gap by combining supply chain complexity and 

AM best practices. Among others, it can contribute to the existing literature by illustrating the benefits of 

adopting AM technology particularly in footwear sector. 
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Monitoring and regulating the interplay of different aspects of the supply chain gets 
increasingly challenging as the supply chain's complexity develops. The structural complexity 
of supply chain networks substantially influences performance, resilience, and adaptation. 
Researchers such as Cheng et al. (2014) have explored all aspects of SCC using the entropy 
model based on information theory, the causes that contributed to it, and the consequences 
for enterprises and supply chain management methods.  

The researchers Pérez-Gallardo et al. (2014) particularly focused on the footwear industry, 
which often has unique challenges to streamline operations, improve coordination, and 
improve the overall performance of the supply chain management (SCM) by focusing on 
collaboration, technology integration, process optimization, sustainability, and continuous 
improvement, businesses can create a more efficient and responsive supply chain. The 
analysis explored the structural factors that contribute to upstream SCC and examined the 
sourcing of raw materials and components that are often the most complex part of the supply 
chain due to their reliance on multiple suppliers, geographical dispersion, and variability in 
supply (Bode and Wagner, 2015). The automobile industry's supply chain is complicated due 
to a variety of factors, including various supplier networks, varying consumer expectations, 
and intricate logistics. To successfully manage this complexity, an integrated strategy 
combining Interpretive Structural Modeling and a Graph-Theoretic methodology can provide 
an effective basis for recognizing and quantifying SCC (Kavilal, et al., 2018). The authors 
Chowdhury and Islam (2021) developed a conceptual framework for the implementation of 
effective SCM practices that have a noteworthy influence on operating performance,  by 
focusing on supplier management, inventory optimization, production planning, logistics 
efficiency, and IT integration of firms to improve their cost efficiency, quality management, 
flexibility, and supply chain resilience. Habib and Saleheen (2022) created the Integrated SC 
performance measurement model, which determines the performance of SC parameters and 
a performance index of measurement. This methodology integrates 10 supply chain 
performance assessment variables and uses quantitative methodologies to create a 
synergistic effect across all stakeholder problems. To address agile and global supply chain 
issues, Adam and Dandutse (2023) investigated and proposed a relationship-building 
methodology on Avakino Ltd. The study aimed to investigate qualitatively, how supplier 
sustainability affects wholesaler-distributor sustainability. Unsustainable supplier practices 
can cause wholesaler and supply chain disruptions  (Rosa et al., 2019). 

1.1. Supply Chain Complexity 

Serdarasan (2013) divides SCC into two categories: (1) static and (2) dynamic. Static 
complexity, also known as detail or structural difficulty refers to the unique quantity of 
elements, operations, or sections that together make up a method. It is also measured by the 
number and variety of items, procedures, customers, and vendors. Furthermore, based on 
Cheng et al. (2014), this complexity is related to the SC's structure as well as its numerousness 
(number of customers, suppliers, commodities, etc.) and diversity of components (supply 
base, product varieties, markets serviced, etc.) inside the SC. Dynamic complexity, also known 
as operational complexity, termed as the unexpected character of a system's reaction to a 
given set of inputs, this is partly due to the system's interconnectivity and is connected to 
uncertainties associated with time and randomness. In contrast, Wilson and Perumal (2009) 
classified SCC into three categories: (1) organizational complexity, (2) product complexity, and 
(3) process complexity. According to them, organizational complexity is made up of multiple 
facilities, organizations, and systems that power a company's activities. Furthermore, product 
complexity refers to the variety of items available to clients, whereas process complexity refers 
to the number of business procedures and contact points used in delivering a product and its 
support. These SC difficulties are classified into three groups based on their position in the 
hierarchy: (a) upstream complexity, (b) internal manufacturing complexity (midstream 
complexity), and (c) downstream complexity (Hakimi et al., 2015).  

1.2. AM in Supply Chain 

Additive manufacturing is expected to have a disruptive influence on supply chains across 
several sectors. Its capacity to cut costs, improve efficiency, increase flexibility, and promote 
sustainability makes it a valuable tool in modern production. However, resolving issues like 
quality, scalability, intellectual property, and regulatory compliance is critical to fully fulfilling 
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AM's promise (Zijm et al., 2019). AM is transforming industrial processes, especially within the 
context of Industry 4.0, which focuses on digital transformation, connectivity, and smart 
production. The incorporation of AM into eco-friendly business strategies has extensive 
potential to increase economic, environmental, and social enhancement (Godina et al., 2020). 
An empirical analysis was performed by Oettmeier and Hofmann (2017) to investigate the 
determinants of AM technology adoption, focusing on both general and  SC related factors to 
understand the factors that influence the potential for cost savings, lead time reduction, and 
increased SC resilience, allowing businesses to make more informed decisions about 
incorporating AM into their operations and supply chains. AM is rapidly being used in a variety 
of sectors due to its ability to transform traditional production and supply chain processes. 
The research reported by Thomas (2016) focused on the costs, advantages, and adoption 
aspects of AM from a supply chain viewpoint, offering a thorough grasp of its influence on 
contemporary manufacturing and logistics. AM is poised to have a transformative impact on 
the aviation industry, providing significant profits in terms of cost efficiency, personalization, 
and supply chain optimization (Wagner and Walton, 2016). The complexity of AM supply chains 
may be quantified in a variety of ways, reflecting the distinct qualities and problems inherent 
in AM processes. The article reported by Raihanian and Behdad (2017) explored key metrics 
and approaches for analyzing the SCC in AM complexity, offering a complete framework for 
understanding and managing this complexity. Haghighat (2020) developed a comprehensive 
strategy, combining technology innovation with strategic supply chain management.  

As stated, AM is known to provide a disruptive prospect for supply chains by enabling 
decentralized, customizable, and on-demand production,  complications such as product 
variability, material management, and technical integration. Accordingly, Velazquez et al. 
(2020) examined the implications of AM in reforming traditional SC and logistics operations to 
obtain a competitive edge by increasing agility, cutting costs, and meeting expanding customer 
expectations in a rapidly changing global market. An exploratory qualitative study technique 
was also used on 20 organizations, and workshops to outline the procedures and actions 
connected to AM, as well as to examine innovations in the supply chain. The study reported 
by Luomaranta and Martinsuo (2020) highlights real changes in SC as well as a need for supply 
chain advances pertaining to AM, and the outcomes that can help businesses guide their 
operations and collaborate with other enterprises in the AM SC. The theoretical models were 
developed to evaluate the SC costs of traditional and AM in a local, small-scale supply chain 
for producing, inventorying, and delivering highly individualized consumer products. The case 
study results reported by Cui et al.(2021) indicated that using AM can result in cost reductions 
of up to 31.46%  . The researchers Rinaldi et al. (2021) used simulation to examine the adoption 
of AM methods and the factors that influence supply chain architecture, where the efficiency 
was evaluated for both conventional and AM. The results demonstrated that AM improves 
supply chain performance and offers significant advantages in the decentralized solution. The 
conceptual model case study developed by Alogla et al. (2021) showed the results of 
implementing AM on SC adabtabilityin key areas: quantity, mix, shipment, and novel item 
development. Comparison of processes was done utilizing data acquired from a 
manufacturing organization. A discrete event simulation model was designed to analyze the 
role in the supply chain, using five input elements, to test the reaction of the supply chain to 
varied beginning circumstances to evaluate supply chain performance (Rinaldi et al., 2022). 
The authors Akmal et al. (2022) proposed that potential decision making for the transition to 
industrial AM entails a systematic method to assess feasibility, minimize risks, and optimize 
supply chain integration. This strategy not only improves operational efficiency and flexibility 
but also prepares organizations to benefit from AM technology. 

Review of the existing literature indicates that the previous research focused on conceptual 
and qualitative study of the best practices of adopting AM technology to improve supply chain 
complexity. On the other hand, the AM adoption not only enables the SC to use fewer raw 
materials, but also removes the need for energy-intensive, ineffective, and environmentally 
harmful manufacturing processes (Evgeni et al., 2019). One of the main determinants of 
whether manufacturers will be able to compete and thrive in the era of Industry 4.0 is 
becoming the implementation of AM in the manufacturing process, where according to 
Rehman et al (2024), sustainable development like financial performance is increased by 
implementation of industry 4.0. However, there are limited quantitative studies that 
demonstrate the impacts of AM best practices to enhance SCC have been reported. 
Furthermore, no research has identified and correlated the AM optimal practices with SCC. 
Thus, this study was done in Ethiopia's footwear sector to bridge the gaps and quantitatively 
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demonstrate the effects of implementing AM in SCC. 

2 RESEARCH METHODOLOGY  

2.1. Research Process 

The best practices of AM and supply chain complexity drivers were discovered after 
exhaustive literature research. The present study implements the research procedure as 
illustrated in Figure 1. The selected AM best practices were divided into four categories: (a) 
factors relating to time, (b) inventory, (c) operations, and (d) resources, energy, and waste. In 
addition, the discovered supply chain complexity drivers are divided into static and dynamic 
complexities. From these findings, a theoretical framework and hypothesis were constructed, 
where 1-5 Likert scale questionnaires were developed based on the literature research, 
theoretical framework, and collaboration with professionals from the Ethiopian footwear firm. 
A preliminary investigation was conducted to evaluate the questionnaire's dependability, with 
25 questionniers sent to respondents in the case industries. The reliability of each item was 
evaluated using the Cranach alpha (α) technique. Based on the pilot research findings, the 
questions were modified and 205 questionnaires were sent and collected from respondents 
from 29 footwear enterprises and one training institute that work on footwear and garment 
products between October 20 and December 12, 2023. A structural model was constructed 
with the SPSS Amos™ V 23 software using acquired data and a theoretical framework. 
Following that, confirmatory analysis (CFA), measurement, and structural model fit tests were 
carried out. The final structural equation model was built utilizing the outcomes of the CFA 
and the elements that fit the validity and discriminant analysis tests. The suggested hypothesis 
was subsequently tested using route analysis. Finally, the hypothesis test findings were 
compared to previous investigations, and a conclusions were drawn. 

  

 
Figure 1 -  Overview of research procedure 

 

2.2 Reliability Test  

The questionnaires were evaluated for reliability and validity. A higher computed 
dependability coefficient was obtained for more connected elements. For testing the reliability 
of constructs, Cronbach's alpha ( ) value was employed to measure construct dependability, 
with a suggested reliability coefficient of 0.7  (Kline, 2023). 
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2.3 Measurement and Structural Model Fit Test 

2.3.1 Convergent validity test 

Correlation analysis provides a measure of convergence validity, which is the degree of 
agreement between various indicators of the same construct. To establish convergent validity, 
the items' factor loading (FL), composite reliability (CR), and average variance extracted (AVE) 
are considered. FL of 0.7 or above implies strong convergent validity, although FL of 0.5 or 
higher is acceptable. The composite dependability should be 0.7 or above. According to the 
author Joseph et al (2022), for sufficient convergent validity, the AVE value must be more than 
0.50. 

2.3.2 Discriminant Validity Test 

Discriminant validity refers to how much the conceptions truly vary from one another 
through experimentation. It also determines the degree to which overlapping conceptions 
differ from one another (Joseph et al., 2022). The most rigorous and popular way of 
discriminant validity testing is to compare the square root of each concept's AVE value with 
the correlation estimate between that concept and other components (Hamid et al., 2017).  

2.3.3 Confirmatory factor analysis  

A confirmatory factor analysis is employed to assess the validity of the model's 
measurement. The validity is assessed using model fit indices. The author Brown (2015)  
recommended the following cutoff values for fit indices: Tucker–Lewis fit index (TLI) and 
comparative fit index (CFI) > 0.9, Relative/Normed chi-square (χ2/df) from 5.0 < χ2/df < 2.0, 
Root mean square residual (RMR) and Root mean square error of approximation (RMSEA) < 
0.08. 

3 RESEARCH CONCEPTUAL FRAMEWORK AND HYPOTHESIS 

Taking the preceding literature review into consideration, this study classified AM best 
practices into four categories.  

(1). Time-related factors (TIMRF),  
(2). Inventory related factors (INVRF),  
(3). Operation-related factors (like manufacturing performance, manufacturing flexibility) 

(OPERF), and  
(4). Resource, pollution and waste-related factors (REWRF) are considered exogenous 

variables.  
Endogenous variables, on the other hand, describe SCC and can be classified as static 

(SSCC) or dynamic (DSCC) that are used as a basis to develop the theoretical framework 
depicted in Figure 2 by comparing AM best practices to supply chain complexity. Thus, based 
on literature study, the following hypotheses were developed: 

Hypothesis 1: Time-related factor of AM has positive and significant effects on SSCC  
Hypothesis 2: Time-related factor of AM has positive and significant effects on DSCC  
Hypothesis 3: Inventory related factor of AM has positive and significant effects on SSCC  
Hypothesis 4: Inventory related factor of AM has positive and significant effects on DSCC  
Hypothesis 5: The operational factor of AM has positive and significant effects on SSCC  
Hypothesis 6: The operational factor of AM has positive and significant effects on DSCC  
Hypothesis 7: Resource, energy and waste related factor of AM has positive and   significant 

effects on SSCC        
Hypothesis 8: Resource, energy and waste related factor of AM has positive and   significant 

effects on DSCC. 
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Figure 2 - Conceptual framework 

 

4 RESULTS AND DISCUSSIONS 
 

4.1 Demographic Characteristic 
 

Table 1 shows the demographics of survey respondents. Gender, education level, age, 
respondents' employment position, and work experience were all identified among the 205 
survey participants.  

 
Table 1 - Demographic description (n=205) 

Description Frequency Percentage (%) 

Sex Male 108 52.68 

Female 97 47.31 

Education level Diploma 31 15.12 

Undergraduate 128 62.43 

Master's Graduate and above 46 24.43 

Age 20-30 33 16.09 

31-35 89 43.41 

>36 83 40.48 

Respondents 

job position  

Supply chain and logistic worker 58 28.20 

Production workers 68 33.17 

Top management workers 56 27.31 

Experts 23 11.21 

 

Work 

experience 

<5 years 5 2.43 

6-10years 41 20 

11-20years 103 50.24 

>21 years 56 27.31 

 
4.2. Measurement Model Analysis 
 

The values given in Table 2 demonstrate that every constructs have -values ranging from 
0.757 to 0.909. This means that Cronbach's -values for all constructions superpassed the 
permissible limit of 0.70 (Kline, 2023). Therefore, all of the study's measurements have high 
consistency and reliability. 

The CFA results in Table 2 show that the relative chi-square (χ2/df) value for all six 
constructs falls within 0.00 to 4.18; the goodness-of-fit statistic (GFI) within 0.968 to 1.00; 
Bentler's comparative-fit-index (CFI) within 0.982 to 1.00; and Tucker Lewis's goodness-of-fit-
index (TLI) within 0.955 to 1.00. This demonstrates that the six structures fit fairly well, as 
suggested by (Brown ,2015). 

The measurement model results in Table 2 reveal that all latent constructs meet the 
convergent validity requirement, which means that all variable factor loadings are greater than 
0.7. Furthermore, the convergent validity test results in the same table revealed that all 
constructs have a CR higher than 0.70 and AVE higher than 0.50, indicating that both CR and 
AVE values corresponded to or exceeded the appropriate cutoff criteria  (Joseph et al., 2022) 
and (Hamid et al., 2017).  

In this work, measurement model fit tests for independent and overall constructs were 
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done using CFA, and the results are given in Figures 3 and 4. In addition, the findings of CFA 
analysis for overall constructs shown in Figure 4 illustrated that the measurement model fits 
well with χ2/df =2.288, GFI=0.855, IFI=0.905, TLI=0.882, CFI=0.908, RMR=0.063, and 
RMSEA=0.079. 
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Table 2 - Summary of measurement model test results 

Latent variable Items FL (α) CR AVE χ2/df CFI TLI GFI RMR RMSEA 

 

Time-related factor 

TIMRF3 0.835  

0.853 

 

0.908 

 

0.674 

  

1.00 

 

1.00 

 

1.00 

 

0.000 

 

0.670 TIMRF2 0.861 

TIMRF1 0.764 

 

Inventory related factor  

INVRF4 0.696  

0.824 

 

0.764 

 

0.567 

  

1.00 

 

1.00 

 

1.00 

 

0.000 

 

0.550 INVRF2 0.799 

INVRF1 0.762 

 

Operation related factor 

OPERF3 0.549  

0.757 

 

0.864 

 

0.580 

  

1.00 

 

1.00 

 

1.00 

 

0.00 

 

0.00 OPERF2 0.894 

OPERF1 0.800 

 

Resource and energy-related  

REWRF5 0.882  

 

0.909 

 

 

0.808 

 

 

0.691 

 

 

4.18 

 

 

0.982 

 

 

0.955 

 

 

0.968 

 

 

0.034 

 

 

0.125 

REWRF4 0.808 

REWRF3 0.691 

REWRF2 0.907 

REWRF1 0.851 

Static supply chain complexity SSCC4 0.850  

0.843 

 

0.845 

 

0.594 

 

0.056 

 

1.00 

 

1.00 

 

1.00 

 

0.000 

 

0.000 SSCC3 0.719 

SSCC2 0.852 

SSCC1 0.642 

Dynamic supply chain complexity DSCC3 0.967  

0.861 

 

0.892 

 

0.686 

 

0.000 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

0.711 DSCC2 0.704 

DSCC1 0.793 

α = Cronbach's, FL=factor loading, CR= composite reliability,  AVE= average variance extracted, χ2/df= relative/normed chi-square, CFI=bentler’s comparative-fit-index, TLI= 

tucker Lewis’s goodness-of-fit-index,GFI= goodness-of-fit statistic, RMR= root mean square residual, RMSEA= root mean square error of approximation 
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Figure 3 - Individual construct model fit test 

 

 
Figure 4 - Overall construct measurement model fit test 

 

 

In addition, a discriminant validity test was performed to assess whether the AVE of each 
construct surpassed the maximum square correlation with other components. Based on this, 
the discriminant validity test, as shown in Table 3, demonstrated that the squared root of AVE 
for each latent variable is larger than the inter-construct correlation between each pair of 
latent variables in all cases. This revealed that the constructs were distinct and accurately 
characterized by their measurement scales. Hamid et al. (2017) found that convergent and 
discriminant validity were adequate for our measurement model. 

Therefore, based on the results of reliability (Cronbach's alpha value), convergent validity 
(Factor loadings, CR, and AVE), and discriminant validity (squared root of AVE) test obtained by 
this study, concluded that the latent constructs found in the developed model in this study are 
reliable, internally consistent, convergent, and with a acceptable level of discriminant validity, 
and the developed model is acceptable or fit for structural model test or analysis. 

 
 
Table 3 -  Discriminant validity test or assessment 

 TIRF INRF OPRF RWRF SSCC DSCC 

TIRF 0.821      

INRT 0.166 0.753     

OPRF -0.056 0.111 0.761    

RWRF 0.020 0.029 -0.045 0.831   

SSCD -0.002 0.097 0.181 0.016 0.770  

DSCC 0.046 0.102 0.010 0.083 0.216 0.828 
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4.3. Structural Model and Hypothesis Test  

The measurement model's validity and reliability have been demonstrated; thus, the next 
step is to examine the structural model and validate the presented hypotheses using SEM 
(Malik et al., 2024) with AMOS. This study employed structural SEM as it allows for 
simultaneous analysis, which leads to more accurate estimations and is the highest probability 
approach for investigating the correlations between variables. Figure 5 displays the results of 
the structural model's goodness of fit assessment. The model has an excellent fit to the data, 
with a χ2/df ratio of 2.27. This is below the usual criterion of fit (less than 5), indicating a robust 
fit. The model fit indices also offered corroborative evidence, with the root mean square error 
of approximation (RMSEA) at 0.063 and the root mean square residual (RMR) at 0.079, both 
considerably below the proposed limit of 0.08 as suggested by (Brown, 2015). Furthermore, 
the Tucker-Lewis index (TLI) was 0.887, approaching the cutoff point of 0.90, and the 
comparative fit index (CFI) was 0.903, reaching the minimal acceptance level of 0.90 (Brown 
,2015). The goodness-of-fit statistic (GFI) was 0.854. When combined, these findings show the 
degree to which the SEM matches the empirical data, providing a solid foundation for the 
hypothesis' further evaluations. 

The structural model evaluation results are given in Figure 5 and Table 4., which include 
the results of the hypothesis tests. The assessment results in Table 4 suggest that the path 
from time to static complexity (β= 0.028, p= 0.677) supports Hypothesis 1. This result is in line 
with the findings of Ming and Yi (2016). Additive manufacturing's time-dependent behavior has 
a favorable impact on static supply chain complexity. As a result, this AM behavior enables 
enterprises to reduce raw material delivery from suppliers to customers and product delivery 
from firms to end users by consolidating SC into a single entity.  

Similarly, the path from time to dynamic complexity demonstrates a positive and 
statistically significant effect (β = 0.209, p = 0.005), entirely supporting Hypothesis 2. This 
finding is also supported by the Oettmeier and Hofmann (2017) study. It indicated that additive 
manufacturing's time-dependent nature minimizes demand uncertainty while balancing SCC 
produced by heterogeneous demands and demand amplification. Table 4 also shows that 
inventory-related AM best practices have positive but non-significant influence on static supply 
chain complexity (β = 0.030, p = 0.704), partially supporting Hypothesis 3. The findings for this 
hypothesis concur with the concepts raised by Thomas (2016), and they reveal that using 
additive manufacturing allows the company to make things on the customer's premises by 
converting physical inventory to digital inventory. It leads to reduction of static complexity 
generated by a larger number of inventories in the SC network. Furthermore, the inventory-
related behavior of AM technology safety stock reduces the demand for storage, as well as the 
amount and diversity of objects handled. Thus, the results of Hypotheses 2 and 3 verify those 
of Marta et al. (2021) study outcome, who found that reducing production time and optimizing 
AM's material consumption behavior leads to meeting client demands while lowering the 
quantity and variety of suppliers. By cutting down the lead time for SC and the need for 
inventories and logistics while developing new items for the system, it meets client needs.   
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Figure 5 - Results of Structural model fit test 

 
The path from INVRF to DSCC revealed that inventory-related AM best practices have 

optimistic and considerable influence on dynamic SCC (β = 0.426, p = 0.000), supporting 
Hypothesis 4. This study highlights the relevance of AM's inventory-related behavior in rising 
the dynamic SCC. AM technology reduces the complexity of the supply chain, which is caused 
by supplier unreliability, changing labor skill needs, supplier competency, and supplier 
resource risk (Velazquez et al., 2020).  

 
Table 4 - Result of structural modeling test 

Hypothesis Paths Estimate (β) p Remarks  

Hypothesis1 

STATIC <--- TIME 0.028 0.677 

Partially 

supported 

Hypothesis2 

DYNAMIC <--- TIME 0.209 0.005 

Fully 

Supported 

Hypothesis3 

STATIC <--- INVENTORY 0.030 0.704 

Partially 

supported 

Hypothesis4 

DYNAMIC <--- INVENTORY 0.426 *** 

Fully 

supported 

Hypothesis5 

STATIC <--- OPERATION 0.269 0.012 

Fully 

Supported 

Hypothesis6 

DYNAMIC <--- OPERATION 0.351 0.003 

Fully 

Supported 

Hypothesis7 

STATIC <--- RESOURCE 0.083 0.146 

Partially 

Supported 

Hypothesis8 

DYNAMIC <--- RESOURCE -0.024 0.699 

Not 

supported 

 
 
The path from OPERF to SSCC demonstrated optimistic and statistically significant 

association between AM best practices and static supply chain complexity (β = 0.269, p = 
0.012), supporting Hypothesis 5. Static complexity in the supply chain is produced by the 
increased amount of interdependence between pieces, the quantity and variety of suppliers, 
and their location. Furthermore, this level of complexity occurs as a result of the SC network's 
numerous components. However, according to Hypothesis 5, AM's operational behavior 
minimizes static supply chain complexity by lowering component variation and reducing the 
number and variety of providers. The path from OPERF to DSCC shows a positive and 
statistically significant association between operational factors of AM and dynamic supply 
chain complexity (β= 0.351, p= 0.033), supporting Hypothesis 6. This study also suggested that 
dynamic complexity induced by uncertainty within the SC, as well as the unpredictability of the 

https://doi.org/10.14488BJOPM.2322.2025
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supplier chain, is minimized by AM's operating behavior, which reduces supplier reliance. The 
results in Hypotheses 5 and 6 are also in line with concepts raised by Akmal et al. (2022). 

AM's resource, energy, and waste variables have a positive but non-significant association 
with static supply chain complexity (β= 0.083, p= 0.146), partially supporting Hypothesis 7. This 
result is supported by the findigs of Evgeni et al. (2019). The use of AM technology decreases 
the amount of raw materials required, eliminates the need to produce undesirable parts 
(reducing waste), and delivers customized goods only when necessary. However, the path 
from REWRF to DSCC revealed that the resource, energy, and waste-associated factors of AM 
had a negative and non-significant association with dynamic supply chain complexity (β= -
0.024, p= 0.699), rejecting Hypothesis 8. This demonstrated that AM's resource, energy, and 
waste-related best practices had little effect on improving supply chain complexity. 

 
5 CONCLUSION AND IMPLICATIONS 
 

5.1. Conclusions 
 
This study illustrates the most effective AM strategies for improving supply chain 

complexity in the footwear sector. The study's unique contribution is identification of AM best 
practices and the evaluation of how they enhance supply chain complexity in the context of 
Ethiopia's footwear industry sector. Furthermore, thes study establishes a theoretical 
framework based  on an extensive literature analysis and conversation with practitioners from 
the case industry, treating AM best practices as independent and SCC as dependent entities. 
The CFA and SEM were used to develop and validate measurement tools for supply chain 
complexity AM best practices. The SEM results show that TIMRF, INVRF, and OPERF have 
positive connections with static SCC and dynamic SCC, whereas REWRF has positive and 
negative associations with the same two variables, respectively. Thus, the deployment of AM 
reduces SCC by lowering uncertainty, unreliability, the quantity and diversity of SC pieces, and 
delivery time from the upstream and downstream supply chain networks. Based on the 
findings, this research offeres academics, and SC managers with a thorough understanding of 
AM technology's best practices for lowering supply chain complexity in the footwear sector.  

As a recommendation, more research is needed to apply the findings to diverse industrial 
situations and to integrate best practices. 

 
5.2. Implications and Future Research Directions 
 

Theoretically, the findigs of this study is intended to contribute in closing the knowledge 
gap in the area by identifying the best practices of AM that affect supply chain complexity. In 
addition, it contributes the conceptual framework and empirically test how AM best practices 
improve the complexity of footwear industry supply chain. Therefore, researchers can base 
related investigations on this study model. Moreover, practically this research provides a basis 
for managers and practitioners in the footwear sector to successfully implement AM 
technology to address supply chain complexity-related issues and, consequently, to improve 
organizational performance. On the other hand, the study used data from a single industry 
sector (footwear industry), which can influence the generalizability of the findigs. Thus, 
forthcoming studies are encourage to use and empirically test the development of conceptual 
framework in other types of industries. 
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