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1 INTRODUCTION 

 
Production planning and control (PPC) is the backbone of any manufacturer. It determines the 

production plan that satisfies customer demands while meeting monetary, time, or performance 
objectives (Cadavid et al., 2020). PPC comprises stages such as lot sizing, scheduling, and capacity 
control (Schmidt and Schäfers, 2017). These, however, are jeopardised by sudden breakdowns, 
which disrupt set-up plans (Zarte et al., 2017). Hence, continuous flawless production is crucial to 
be competitive, which can be achieved with appropriate maintenance planning (Mostafa et al., 
2015). However, maintenance and production departments make different planning decisions 
under conflicting objectives (Varnier and Zerhouni, 2012) despite a significant interdependency 
between maintenance and production plans (Dehghan et al., 2023). 

To support these issues, novel technologies push manufacturing toward a new industrial 
revolution (Frazzon et al., 2019). As a result of this, through Industry 4.0, condition-based 
maintenance emerged (Cordeiro et al., 2019), ultimately leading to prescriptive maintenance (PxM). 
PxM facilitates self-configuring maintenance and production planning and control and contributes 
to moving closer to zero defect manufacturing (Psarommatis et al., 2021) and a maintenance-free  
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factory (Glawar et al., 2022). 

While 'traditional' maintenance strategies are reactive or static, the paradigm of condition-
based maintenance and its most mature form, PxM, enables predicting failures and prescribing 
optimal actions based on sensor data analyses. Instead of only predicting maintenance actions (i.e., 
predictive maintenance), PxM offers ways to jointly optimise PPC and maintenance planning 
(Wesendrup and Hellingrath, 2022). For instance, it enables opportunistic maintenance by 
synchronising machine usage so that maintenance activities can be grouped (Koochaki et al., 2012). 
However, this requires close collaboration between production and maintenance planners, but 
research shows that these departments still make isolated, suboptimal and conflicting plans even 
though maintenance plans need to incorporate production constraints and vice versa (Varnier and 
Zerhouni, 2012). Consequently, only a few manufacturers have adopted PxM for their PPC decision-
making (Mulders and Haarman, 2018).  

Planning and control decisions are typically made via optimisation or simulation models (Goby 
et al., 2023) that are grouped under the collective term 'planning model' (Stadtler and Kilger, 2015). 
Research addressed the need of integrated planning models (Budai et al., 2008) by developing 
many joint PxM and PPC planning models (Bousdekis et al., 2019). However, these models are 
highly specific to the use case, and it is unclear how decision-makers can construct adequate 
planning models for their own, novel production contexts. First, there is no general overview 
showing what objectives exist, which decisions could be relevant, or where the boundaries of 
planning models should lie. Second, there is no guidance on which of these components should be 
considered (together) and how they can be systematically selected in order to derive an effective 
planning model. Therefore, this research should answer the following research questions (RQ1 and 
RQ2): 

RQ1: What components do integrated PxM and PPC models comprise? 
RQ2: How can key components be systematically chosen to construct specific integrated PxM 

and PPC models? 
To address the first research question, the literature is examined to identify components of 

integrated PPC and PxM planning models. For the second question, the interrelations of the 
identified components are analysed, and a guiding framework for selecting relevant components 
is developed. Theoretical contributions include providing a descriptive overview and normative 
guidance in the selection of planning-relevant components that can or should be used for future 
PxM-aligned PPC planning models, pinpointing possible research gaps. This may assist scholars in 
identifying components that could be: a) outcomes representing and quantifying the intended goal 
of their planning problem, b) PPC and maintenance decisions benefiting from PxM, and c) 
determining the appropriate level of specificity and abstraction of the planning environment. As a 
practical contribution, a collection of diverse ‘building blocks’ of planning models is offered. 
Managers can use this collection, guided by a normative tool, to construct integrated models 
tailored to their specific planning problems, fostering alignment between production and 
maintenance departments, plans, and controls. 

The following section introduces the theoretical foundations of PPC, PxM, and planning models, 
as well as related works at the intersection of these areas. Section 3 describes the methodology of 
our literature review. Section 4 presents the literature review that highlights the components 
regarded in PxM and PPC planning models and answers RQ1. To answer RQ2, Section 5 analyses 
the interrelations of these components and proposes a framework that guides researchers and 
practitioners in conceptualising planning models. In the final section, the findings are discussed, 
further research ideas are presented, and the work is concluded. 

2 FUNDAMENTALS 

As this work investigates the intersection of PxM, PPC and planning models, it is pivotal to 
understand the theoretical fundamentals of these sovereign research streams and the state of 
research. 

Production Planning & Control and Prescriptive Maintenance 
Production planning and control (PPC) is the 'nervous system' (Kiran, 2019, p. 1) of every 

manufacturing company, and its goal is to generate a plan allowing to continuously manufacture 
products in the correct quantity and quality at the right time and with minimum costs (Oluyisola et 
al., 2020). Planning horizons are typically long-term, strategic, mid-term, tactical, and short-term, 
operational (Stadtler and Kilger, 2015). Long-term plans are typically made for years to weeks, 
medium-term plans for weeks to days, and short-term plans and controls are made daily or even 
in real-time (Bonissone and Iyer, 2007). Over these horizons, PPC comprises the steps program-, 
requirements-, source-, and production planning, production control, monitoring, inventory and 
order management, and dispatching. However, breakdowns jeopardise plans made over different 
planning horizons, which can be tackled by a good maintenance strategy (Broek et al., 2020). 
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Traditional maintenance strategies are either reactive or preventive (Wagner and Hellingrath, 
2021). The former causes unplanned disruptions, long downtimes, and losses in production 
capacity; the latter is often overly strict and causes unnecessary maintenance or, in the worst case, 
maintains too late (Liu et al., 2023). Condition-based maintenance tackles all these issues by 
maintaining machines based on their condition through acquiring and analysing sensor data (Broek 
et al., 2021). Condition-based maintenance is supported by prognostics and health management, a 
process comprising fault detection, diagnostics, prognostics and decision-making (Guillén et al., 
2016). Each step builds upon its predecessor and enables different maturity levels of condition-
based maintenance strategies (Ansari et al., 2019). PxM is the most mature level of condition-based 
maintenance, turning knowledge into value through decision-making (Skima et al., 2019). It answers 
the question of 'How should something happen?' by providing actionable recommendations. 
Optimally, these condition-based recommendations are not limited to maintenance decisions but 
also address PPC, leading to condition-based production (Broek et al., 2021).  

Maintenance and production planning, however, are often performed separately, even though 
they are highly interdependent (Dehghan et al., 2023). Here, PxM provides an opportunity to align 
both with integrated PPC and PxM planning models. 

2.1 Planning Models 

While the domains of PPC and PxM are broad and span many functions of a manufacturing 
company, not every detail can be regarded in planning. Therefore, one must use simplified 
abstractions of real planning problems, so-called planning models. Planning models are either 
optimisation or simulation models, and they prepare decisions by recognising and analysing 
decision problems, forecasting future developments, identifying and evaluating possible solutions 
and selecting good ones (Stadtler and Kilger, 2015). In order to construct planning models, it is 
helpful to identify components of established PxM and PPC models, which is the goal of this work. 
Here, Starr (1966) defines three basic dimensions of building blocks: outcomes, decision variables 
and environment.  

 
  Table 1 - Related works 

References PPC PxM Outcomes 
Decision 

variables 
Environment 

(Regal and Pereira, 2018) 
     

(Ansari et al., 2019; Cho et al., 

2020; May, G. et al., 2022)      

(May, M. C. et al., 2022) 
     

(Bousdekis et al., 2018) 
     

(Psarommatis et al., 2021) 
     

(Gutschi et al., 2019) 
     

  = fully,  = partially,  = not addressed 
  Source: The authors themselves. 
 

The dimension outcomes represents a manufacturer's aims. Outcomes can be used as 
objectives which are always maximised (e.g., a component of this dimension could be throughput), 
minimised (e.g., cost), or used as a constraint (e.g., service level). Further outcomes quantify 
whether objectives have been achieved or enable the analyses of why the objectives have been 
missed. For instance, if the primary outcome is to increase the throughput, machine availability 
could be an intermediary outcome to identify reasons for failure. Decision variables are the 
decisions that can be changed to achieve the outcomes (e.g., number of maintenance staff, 
production plans). In contrast, the environment comprises entities that are considered fixed, such 
as products, production lines or human resources (of course, depending on the planning problem, 
these can theoretically be decision variables).  

2.2 Related Works 

This work reviews PPC and PxM planning models to identify their outcomes, decision variables, 
and environment. To highlight the research gap and to build on existing literature, related works 
have been identified using a narrative literature review methodology (Paré et al., 2015). Hereby, we 
focussed on 'holistic' works, such as reviews, standards, reference models, ontologies, or 
frameworks, by querying Google Scholar with keywords related to PxM, PPC and planning models. 
REFERENCES 

 presents these works and how well they address the four planning model dimensions. 
Regal and Pereira (2018) developed a comprehensive ontology for condition-based 
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maintenance systems focusing only on spare parts sourcing. Vice versa, some works cover all steps 
of the PPC process (cf. Section 2.1) but include a limited environment (Ansari et al., 2019; Cho et al., 
2020; May, G. et al., 2022). In contrast, May, M. C. et al. (2022) propose a generic simulation ontology 
for production encompassing a detailed environment and addressing the whole PPC process.  

In contrast to these ontologies, Bousdekis et al. (2018) review condition-based decision-making 
methods. Therefore, they only address the decision variables and outcomes of these approaches. 
Further, Psarommatis et al. (2021) investigate PxM for quality-related PPC to achieve zero defect 
manufacturing, albeit they only address control decision variables and some key performance 
indicators as outcomes. Lastly, the work from Gutschi et al. (2019) proposes a framework for 
simulation-based evaluation of maintenance strategies. Due to the limited environment, only a 
handful of examples of the different components of planning models are analysed, and PPC 
decisions are not addressed. 

 
In conclusion, no existing work covers all planning model dimensions, highlighting the outlined 

research gap. Still, these works are a valuable basis for our research. 

3 METHODOLOGY 

A systematic literature review has been conducted using the eight-step methodology by Thomé 
et al. (2016) to fill the outlined research gap. 

Step 1: Planning and formulating the problem. | As explained in the last section, the existing 
body of literature has been checked by querying major journals and scientific databases, and the 
identified research gap should be illuminated by addressing the abovementioned research 
question. 

Step 2: Searching the literature | Step 2 comprises another, subordinate seven-step approach 
to search for literature. First, Scopus, the most extensive scientific database, has been selected as 
the database (i) and queried with the following keywords (ii) returning 521 hits: 

TITLE-ABS-KEY("production" AND ("predictive maintenance" OR "prescriptive maintenance" OR 
prognost* OR "condition-based maintenance") AND (optimisation OR planning) AND (scheduling 
OR requirements OR "production planning" OR "production control" OR sourc* OR monitor* OR 
inventory)) 

Additionally, Web of Science and IEEE Xplore databases have been queried with the same 
keywords to check whether a theoretical saturation has been reached. Multiple relevant 
publications were sampled and analysed for each database, but no novel components emerged. 
Thus, it was deemed that Scopus was sufficient for a representative review. Next, all abstracts were 
reviewed by two reviewers (iii), and the following inclusion criteria were applied (iv):  

• Primary subject should be production. 
• Primary subject should be condition-based maintenance. 
• Publication should contain a planning model (e.g., optimisation, simulation). 
• Complete English text should be accessible. 

Following these criteria separately, both reviewers had an inter-rater agreement of 91.04% and 
a Cohen's 𝜅 of 70.63%, which implies substantial agreement (Rafieyan, 2016). 94 relevant 
publications remained, which were used for further analysis (v).  

The entire process of the literature identification is summarised in Figure 1 in the commonly 
used PRISMA notation. 

Step 3: Data gathering & Step 4: Quality evaluation | The remaining 94 publications were then 
scanned for planning-relevant components being the manifestation of the dimensions as 
presented in Section 2.2. The dimensions are based on the building blocks of Starr (Starr, 1966) and 
comprise outcomes, decision variables and environment.  

Step 5: Data analysis and synthesis & Step 6: Interpretation | 47 outcomes, 16 decision variables 
and 34 entities comprising the environment were identified. All components from these three 
dimensions were statistically analysed to reveal which components to address when considering 
other components using phi correlation. The correlation is measured between two components 
and can lie between +1, which signifies perfect correlation, and -1, which signifies perfect anti-
correlation (Akoglu, 2018). 

Step 7: Presenting the results & Step 8: Updating the review | To check whether the general 
methodology is apt, an intermediate result of the review that focuses on quality control as a small 
subset of PPC has been peer-reviewed and presented [ANONYMIZED_FOR_REVIEW]. 

3.1 Components of PxM and PPC Planning Models 

The following section presents the literature review findings classified by the three dimensions 
and answers the first research question. 
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3.2 Outcomes 

Outcomes comprise the primary goals that should be achieved using a planning model, as well 
as further intermediary measures that quantify whether the goals have been met. All in all, 47 
outcomes could be identified and classified into a time, money, and performance hierarchy as 
shown in Figure 2.  

Money | Monetary outcomes are most addressed. Here, profit is the central measure of 
economic performance and is calculated by revenue plus cost. Revenue can also be exclusively 
considered, e.g., when trying to maximise production regardless of cost. For instance, Broek et al. 
(2020) state that the revenue is proportional to the production rate of a system, which depends on 
its deterioration. A unique form of revenue is the asset value that depends on the maintained 
machine state (Rasay et al., 2022). 

 

 
Figure 1 - PRISMA flowchart of literature search 

Source: The authors themselves. 

 

The pendant to revenue is cost. When decomposing cost, maintenance cost is a primary factor. 
As a budgetary constraint, it can prevent over-maintenance (Ong et al., 2021). PxM can also reduce 
production costs by timely maintenance of resources that would otherwise increase operating 
costs. Further, set-up cost is a factor of production cost. Here, models try to find a good balance 
between small lot sizes so that the risk of an intermediate breakdown is low and big lot sizes to 
reduce the number of costly set-ups (Tasias, 2022). Another important outcome is quality cost, 
which comprises product quality cost caused by scrap or rectifications and often occurs in degraded 
machines (Salmasnia et al., 2020). 

Time | Tardiness is the delay or lateness in completing a production order and an indicator of 
shortage or late costs (Bougacha et al., 2019). Generally, PxM leads to fewer breakdowns, better 
schedule adherence and better due date estimates (Bougacha et al., 2018). Further, lead time is 
vital for efficient spare parts sourcing, and travel time can be used if maintenance teams travel far 
between the assets to be maintained (Xia et al., 2021). The estimation of mean time between failure 
and remaining useful life is essential for condition-based maintenance (Bouzidi-Hassini et al., 2015). 
How well production and maintenance synergise is characterised by availability, the ratio of uptime 
to the sum of down- and uptime (Yang et al., 2022). Downtime typically includes set-up, 
maintenance and, if only performable on stopped machines, inspection times. Maintenance times 
depend on the competence level of a technician, and might increase with machine degradation or 
be constant (Liu et al., 2023). Uptime comprises idle and processing times. The processing time 
depends on the degradation level and can be increased by decelerating the production speed to 
extend the remaining useful life (Esposito et al., 2022). Lastly, the most common time outcome is 
the makespan, which includes all down- and uptime components.  
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Figure 2 - Outcomes 

Source: The authors themselves. 

 

Performance | The last outcome type includes production output and quality. While a higher 
production rate leads to higher output, it also leads to higher degradation and lesser quality 
products (Tsao et al., 2020), which requires good balancing. Both outcomes are typically used with 
the time metric availability, which is called the overall equipment effectiveness and allows for 
balancing all three outcomes. Another prevalent outcome is capacity, which signifies the share of 
available inventory, maintenance, or production resources (van Rooij and Scarf, 2020). Additionally, 
machine utilisation is another measure of an asset's efficiency. 

Further, outcomes include risk-related measures, such as the degradation level, the number 
and risk of failures, and safety. Lastly, there exist two environmental outcomes, carbon emissions 
and energy consumption, that can be reduced through PxM (Mi et al., 2020). 

3.3 Decision Variables 

Decision variables represent the decisions that can be made within PxM and PPC. All identified 
decision variables are either maintenance- or production-related; however, all reviewed works 
integrate at least one decision from each type. Figure 3 shows the identified decision variables and 
how often they have been addressed in the literature.  

Maintenance-related | The decision of when to maintain is most prevalent as PxM enables much 
more exact remaining useful life predictions. Typically, decisions about whether to maintain are 
made at each planning period (Rasay et al., 2022), or time points are implicitly defined by setting 
condition thresholds after which machines are automatically maintained (Wang et al., 2020). While 
the decision on maintenance times can be made in isolation, through PxM, it is also possible to 
change production plans and controls to create opportunistic maintenance windows in which 
multiple machines can be maintained at once (Si et al., 2019). 

Next, decisions on how to maintain define whether machines or components can be maintained 
(e.g., lubricated), repaired, or fully replaced (Mi et al., 2020). Depending on their extent, these 
different maintenance levels restore the machine to different states (Ghaleb et al., 2020).  

The decision variable on what to maintain is relevant for machines with multiple critical systems 
or components and limited maintenance resources (Xia et al., 2021). Similar to maintenance 
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interventions, some models also plan inspections where the machine condition is checked.  
PPC-related | Regarding PPC, most works optimise the sequence by integrating condition 

information, e.g. using operation-specific stress indicators (Zhai et al., 2019). By respecting the 
deterioration operations cause, optimal production sequences allow for postponing increased 
failure risks to periods with less demand (van Rooij and Scarf, 2020). Lot sizes can also be 
dynamically calculated according to the degradation level to minimise the risk of breakdowns 
(Darendeliler et al., 2020).  

 

 
Figure 3 - Decision variables 

Source: The authors themselves. 

 

On a shorter time horizon, machine control parameters allow real-time production control 
based on the machine's condition. Here, different machine components can be controlled, so their 
remaining useful life is synchronised, and all can be maintained opportunistically (Björsell and 
Dadash, 2021). Typically, this is achieved by controlling production speed, rate, or throughput, 
which also de- or accelerates degradation proportionally (Esposito et al., 2022). Next, lead time 
schedules are decision variables on a tactical level that define the quantities and due dates of 
production orders (Bougacha et al., 2019). 

Further, the hedging of stock levels can be dynamised so that spare parts or finished goods 
buffers are built up depending on machine degradation (Hellingrath and Cordes, 2014). Condition 
data can also reveal product quality issues from degraded machines and vice versa, and PxM can 
help to set appropriate quality control parameters (Ma and Lv, 2019). 

3.4 Environment 

Figure 4 depicts an entity-relationship model of the environment, which comprises all planning-
relevant entities that are 'not under the decision-maker's control' (Starr, 1966, p. 117) and can be 
classified as production- (solid frame), machine- (dotted), and maintenance-related (dashed). 
Additionally, we highlight the number of publications addressing each entity using red bars. 

Production-related | Planning models start with a demand that must be fulfilled, which is 
planned through forecasts or orders already issued by customers. While forecasts try to match the 
customers' actual orders, the production period is flexible. Instead, customer orders typically have 
a due date that must be adhered (Xanthopoulos et al., 2017). From the demand, a master 
production schedule is derived that comprises finished products and their quantities. In a PxM 
context, a pivotal property of products is their quality, which decreases and leads to non-
conforming items the more a machine deteriorates (Ma and Lv, 2019). 

Concrete production orders can be generated based on the master production schedule. 
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Production orders produce a specific product (Bougacha et al., 2020) and are based on customer 
orders (make-to-order) or forecasts (make-to-stock).  

 
Figure 4 - Environment 

Source: The authors themselves. 

 

Production orders result in one or multiple lots of a specific size (Zheng et al., 2021) converted 
into specific jobs. Jobs define the different operations that need to be performed and depend on 
the bill of materials, which provides the raw materials that are sourced from suppliers (Tsao et al., 
2020) and are required to produce the end product (Morariu et al., 2020). Depending on the 
manufacturing process, jobs can be non-preemptive, i.e., they cannot be resumed after a 
breakdown and cause scrap (Kung and Liao, 2022), highlighting the importance of PxM to prevent 
breakdowns during production. Further, a job's energy consumption can increase due to machine 
degradation (Ghaleb et al., 2020). 

Operations of a job are supported by machine operators that load, monitor and unload 
machines (Negri et al., 2021) and work based on shift calendars (Padovano et al., 2021). Outside of 
these shifts, production cannot be started and optimally, PxM postpones maintenance 
interventions or breakdowns to the next working period (Elbasheer et al., 2022). Operations are 
typically ordered on machines within a sequence (Bencheikh et al., 2018). An operation is the most 
granular planning entity of PPC and causes degradation.  

Machine-related | Machines as the mainstay of PxM and PPC can produce one or various (semi-
)finished products (Bougacha et al., 2019). Manufacturing these products degrades the machine 
and often reduces its production rate (Leo and Engell, 2022), which can also be lowered manually 
to decelerate degradation (Broek et al., 2021). For instance, CNC machines can work with different 
cutting speeds, feed rates, and various tools (Bougacha et al., 2020).  

Machines can be structured within a hierarchy of systems. For instance, a machine can be part 
of a production line (Negri et al., 2022), which can be part of a plant (Schreiber et al., 2019). Any 
production system can be in a specific state based on its degradation (Rasay et al., 2022). In PPC 
and PxM planning, at least three states are distinguished: operational, failure, and under 
maintenance (Ruiz Rodríguez et al., 2022).  

Besides production machines, logistics, for instance, conveyor belts, forklifts (Negri et al., 2021) 
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and inventory systems, for instance, buffers (Padovano et al., 2021), can be part of the 
manufacturing ecosystem. At the other end of granularity, machines comprise elements that are 
either sensors (Bouzidi-Hassini et al., 2015) or functional components (Ruiz Rodríguez et al., 2022). 
Both have different costs (Bougacha et al., 2020) and need different times for repairs or 
replacements (Ruiz Rodríguez et al., 2022).  

Maintenance-related | In case machines are scattered across multiple plants, maintenance 
routes must be defined that comprise different maintenance interventions (Xia et al., 2021). 
Maintenance interventions require specific processing times, which may depend on the machine's 
degradation state (Ghaleb et al., 2020). Moreover, maintenance can be of different quality, which 
ranges from not improving the system to restoring it to an as-good-as-new state (Zheng et al., 2021). 
Time and quality depend on the tools used (Liu et al., 2023), the skill level of the technician (Ruiz 
Rodríguez et al., 2022) and the performed type of intervention. While most technicians work on the 
premises of the production facility, some enterprises have separate maintenance centres 
(Bencheikh et al., 2018), which is essential for PxM planning.  

In conclusion, the presented components show the different facets that can be considered for 
PPC and PxM planning, which is an excellent first step. However, 'the art of model building' (Stadtler 
and Kilger, 2015, p. 72) is choosing the right detail level and what to include and exclude.  

3.5 Guiding the Development of Planning Models 

Various outcomes, decision variables and the environment of PPC and PxM can be regarded 
within planning models. While the framework shows all possible components, not all can be 
included. For that, 'classical' operations research literature suggests identifying the principal 
elements (i.e., relevant components from each of the three dimensions) of a decision problem 
(Taha, 2017).  

Here, outcomes (i.e. the main objective) are the typical starting point (even though, technically, 
any dimension could be used) from which further components can be identified using a phi 
correlation analysis (cf. Section 3). In the following, we present how further planning model 
components can be derived from a chosen outcome using this correlation analysis. 

3.6 Deriving Planning Model Components 

To choose an appropriate outcome, a manufacturer should first think about where they 
underperform compared to industry benchmarks or whether specific outcomes are pivotal to them 
(e.g., a premium product manufacturer prioritises product quality over everything). As our review 
includes 47 different outcomes, we will limit the following discussion to the five most prevalent 
ones, which provide a good mixture of money, time, and cost outcomes. For the others, the full 
cross-correlation between all reviewed components of all dimensions is accessible at 
[ANONYMIZED_FOR_REVIEW]. We showcase how further model components can be derived from 
these outcomes using the correlation coefficients (shown in parentheses).  

Cost | Cost is the most common outcome and is closely intertwined with the outcomes 
maintenance (.58), stockout (.53) and inventory cost (.32). Correspondingly, its main decision 
variables are decisions on lot sizes (.40), how to maintain (.32) and stock levels (.30), which have a 
direct effect on the outcome.  

Makespan | In contrast, the second-most addressed outcome, makespan, represents another 
extreme, inversely correlated to cost (-0.38). A reduction of this outcome can be mainly achieved 
by adjusting the sequence (.65). Accordingly, jobs (.56) and operations (.73) must be considered 
when employing PxM to minimise the makespan. Whether the outcome is attained can be further 
analysed by observing idle times (.25) or the tardiness (.24) of the production.  

Profit | On the one hand, reducing cost might lead to slow production processes, while on the 
other, achieving a minimal makespan might be a considerable investment. Hence, profit can be a 
good outcome that balances the two extremes. In contrast to cost, profit is extended by revenue 
as a pivotal outcome (.72). Here, either real-time machine control parameters (.27) or tactical lead 
time schedules (.26) are relevant decision variables to increase profit. For instance, increasing a 
machine's production rate increases production revenues as more orders can be fulfilled. However, 
it negatively influences costs, as higher rates lead to more breakdowns and vice versa (Broek et al., 
2020).  

Service level | While cost, makespan, and profit are predominant PxM and PPC outcomes, they 
are only indirectly customer-related. Instead, the service level represents an outcome of customer-
focused manufacturers (e.g. premium producers). Interestingly, components (.38) and 
maintenance centres (.31) are pivotal in the environment of planning models. Here, the degradation 
and timely sourcing of components is crucial to avoid prolonged production outages (Lukitosari et 
al., 2019), and at best, it is entirely outsourced to dedicated maintenance centres (Bencheikh et al., 
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2018). As a fallback, companies can also sustain the service level by adjusting their stock level (.36). 
Service levels are seldom maximised or minimised but instead used as constraining factors, while 
other outcomes, such as machine utilisation (.28), are targeted (Schreiber et al., 2019). 

Production output | Lastly, maximising production output is a well-regarded performance 
outcome. It is often jointly analysed as part of overall equipment effectiveness (.40), which, besides 
output, regards quality and availability (Antao et al., 2018). Analogically, the outcome uptime (.38), 
part of availability, is strongly, and the failure risk (.26) is moderately correlated. Personnel (.40) is 
deemed the most relevant outcome to achieve a high production output, and models should plan 
the number of employed operators and maintenance technicians well. 

3.7 Framework 

Based on these relational analyses, Figure 5 shows a normative guiding framework for 
developing integrated PPC and PxM planning models. It highlights the different dimensions, namely 
outcomes, decision variables and environment of planning models described in the previous 
sections and offers guidance on how to devise PxM-aligned PPC planning models by following three 
steps. 

The first step (1) includes choosing an outcome and deriving first-level correlated components, 
as explained in the previous two subsections. These lay the foundation for additional relevant 
components. In the next step (Step 2), a planner must iteratively derive further components from 
the identified first-level components. To facilitate that, we have performed an extensive phi 
correlation analysis between all components available at [ANONYMIZED_FOR_REVIEW]. 

 

 
Figure 5 - Guiding framework 

Source: The authors themselves. 

 

For demonstration, principal components (i.e. components addressed in 16 or more models 
and positive correlations of 0.1) and their interconnections are visualised in a correlation network 
(Figure 6). Here, the node size represents the number of papers addressing the components, while 
the edge (size) represents the correlation and interdependency of two connected components. The 
figure exemplifies which components a planner should include in planning models if they regard 
another component. Lastly (Step 3), the planner should stop when an adequate model 
expressiveness has been reached, e.g., by consulting an expert or when the correlation of chosen 
components drops below a certain threshold (e.g., < 0.2). By performing the proposed steps, 
relevant components of PxM and PPC models can be derived, and planning models can be 
systematically adapted to a specific planning context. 

4 CONCLUSION 

To conclude, this research answers the question of how integrated PPC and PxM planning 
models can be conceptualised. To address the first research question, the literature was examined 
to identify components of integrated PPC and PxM planning models. Hereby, a structured literature 
review has been used to obtain almost 100 individual planning models and identify components 
from the dimensions of outcomes, decision variables, and environment. For the second question, 
the interrelations of the identified components were analysed, and a normative guiding framework 
has been developed and tested, highlighting how key components can be systematically chosen for 
a specific planning model.  
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Figure 6 - Correlation network 

Source: The authors themselves. 

 

Nevertheless, this research comes with some limitations. First, only literature from one scientific 
database, Scopus, was selected, and no additional sources were identified in forward and backward 
searches. Samples from the databases Web of Science and IEEE Xplore did not lead to new 
components or insights and were thus not included. While an excellent theoretical saturation could 
be reached with almost 100 relevant hits on Scopus, new components may emerge when obtaining 
even more literature. Furthermore, the review is only based on scientific works, and practice-
oriented materials are not used. Hence, using multiple scientific databases (e.g., Web of Science) or 
including practical grey literature, expert interviews, or surveys could reveal more key components 
or change the outcomes of the performed analyses.  

Additionally, the limited sample size leaves some components not well-addressed. Therefore, 
the statistical analyses might not be robust for rarely used components. This can lead to unreliable 
recommendations on what to consider. However, it is also not imperative that strongly correlated 
components must be regarded or that a consideration of weakly correlated ones is never 
warranted. Instead, it is recommended that the framework is always consulted with field experts 
(e.g., production and maintenance managers) and that the correlation scores are only used as an 
initial recommendation. Moreover, as a review, our work only shows what has been used (in the 
past) and not what should be used (in the future). 

Further, a correlation only measures the linear dependency of two variables. However, reality is 
not two-dimensional, and complex interdependencies between combinations of various variables 
exist. Additionally, the solution methods used (e.g., linear programming and genetic algorithms) 
have not been discussed, as the optimal choice is not influenced by the domain characteristics of 
the planning problem but by the specific planning instance (Branke et al., 2016). Here, the reader 
is referred to hyper-heuristics that automatically configure to the specific problem instance (e.g., 
Pessoa et al., 2020). Additionally, multi-criteria decision-making could be used in future works, 
especially for models with multiple objectives. Here, Chakraborty (2023) and Jamwal et al. (2021) 
present overviews of multi-criteria decision-making methods in manufacturing contexts. 
Furthermore, the usefulness of multi-criteria decision-making has been demonstrated for 
condition-based maintenance applications (Gedikli and Cayir Ervural, 2020). 

While it was shown how our framework guides modellers, our underlying review also reveals 
potential for future research. First, current research mainly focuses on core manufacturing 
operations, but only a few publications include sourcing-related decision variables. Moreover, while 
PxM planning often anticipates failures, its potential to identify and control product quality 
deviations can be further investigated. Thirdly, almost half of all planning models tried to minimise 
costs, but the ability of PxM to improve business performance and productivity is highly 
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underrepresented. Next, PxM is a maintenance strategy that enables sustainable or net-zero 
manufacturing, but current literature focuses almost solely on its economic impacts. Further, it was 
shown that PxM enables autonomous, flexible machine controls, which can only be attained by 
decentralised planning. While many of the reviewed works demonstrated how to perform 
decentralised PxM for single decision variables, the interaction between different de- and 
centralised planning models was never demonstrated. Lastly, PxM planning models for PPC rarely 
address the human-in-the-loop. Thus, we propose that future research on PxM and PPC planning 
models should address a) sourcing decisions, b) the effects of quality, c) maintenance not only as a 
cost-driver, d) sustainability, e) decentralised planning and f) the human-in-the-loop. 

To conclude, our work makes valuable contributions to theory and practice. As a theoretical 
contribution, it provides a descriptive overview and normative guidance in the selection of 
components that can or should be used for future PxM-aligned PPC planning studies, pinpointing 
possible research gaps. As a practical contribution, the framework constitutes a tool for managers 
to construct integrated models tailored to their specific planning problems, thus, integrating PxM 
and PPC, fostering alignment between production and maintenance departments, plans and 
controls.. 
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