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1. INTRODUCTION 

In the oil and gas (O&G) industry, maintenance costs represent 40% of total costs, and  

most  of these costs result from inadequate or unscientifically based planned maintenance 

activities (Mobley, 2002). Maintenance shutdowns, for example, are an important strategic 

process for maintenance planning within an industrial plant, being essential in the 

management of equipment that requires more prolonged and in-depth inspections (Caiado 

et al., 2015). Among the various degradation mechanisms of a platform, corrosion is one of 

the main causes of equipment failure (Wu et al., 2013). This can also lead to safety risks, 

which in turn involve increased costs (Muniz et al., 2018) 

From the perspective of offshore facilities, corrosion is the primary factor that affects the 

longevity and reliability of assets, consuming up to 80% of the total maintenance cost in the 

O&G exploration industry (Koch et al., 2002). The corrosion process is a complex physical-

chemical phenomenon that is influenced by various factors (environmental and climatic 

conditions, material characteristics and compositions, among others) (Mishra et al., 2019). 

From the point of view of asset management (Caiado et al., 2022; Lima et al., 2023; 

Nascimento et al., 2019), many of the damages that affect the equipment's integrity over a 

project are related to corrosion (Dawson et al., 2010). The worldwide market for corrosion 

monitoring equipment (excluding inspection) is estimated to be around 25 million dollars, 

including auxiliary accessories and associated tools (Britton, 1990). According to Britton 

(1990), corrosion monitoring usually has one or more of the following objectives: i) diagnose 

corrosion problems in operational equipment; ii) monitor and control the effectiveness of 

corrosion risk mitigation processes; iii) facilitate shutdown scheduling. 

In general, the information necessary for the evaluation of corrosion includes a list of 

items of interest in the asset register (structures, vessels, pipelines, storage tanks, etc.), 

historical data (inspection, monitoring, maintenance), theoretical analysis (new data-based 

systems/models), and informed opinions (Dawson, 2010). Risk classification tools aim to 

focus attention on critical areas, allowing an assessment team to concentrate on items in a 

plant or process that have varying levels of corrosion risks. Corrosion rate data, models, or 

field information can even be used to assess the risk of corrosion in an asset or component 

(Dawson et al., 2010). 

In the oil and gas industry, in addition to the inspection of external corrosion, several 

other activities must be closely monitored to maintain the integrity and safety of units. In 

this context, Maintenance 4.0, which extends predictive maintenance to use data science 

techniques such as Machine Learning is of utmost importance(Orrù et al., 2020) . (Sircar et 

al., 2021) report that the use of artificial intelligence in the oil and gas industry is rapidly 

advancing precisely because it infiltrates various areas, from planning, exploration, and 

production, with the main objective of refining the development plan using historical data. 

Since the development of data analysis techniques, machine learning, which is a type of 

artificial intelligence, has shown significant advantages in data modeling and mining(de 

Paula Vidal et al., 2022a) and can be combined with other techniques, such as nonparametric 

models or multicriteria decision aid (da Cruz et al., 2022; Kaiser et al., 2022). Machine 

learning-based methods have also been proposed in the field of corrosion research, under 

controlled conditions (Diao et al., 2021). For example, (Wei et al., 2021) established a 

relationship model between the corrosion potential of low-alloy steel and its influencing 

factors through an artificial neural network and visualized the influence of various alloying 

elements on the corrosion potential. (Lv et al., 2020) quantified the steel's forming 

parameters, such as input features, and applied the methods to accurately predict the 

sectional corrosion rate. 

The emerging application of machine learning in the field of corrosion offers a variety of 

tools to categorize and prioritize the influence of certain parameters that affect its 

progression, allowing for more effective predictions of corrosive processes. In an initial 

study, (Cai et al., 2018) built a machine learning model to predict corrosion of steel and zinc. 

The results showed that the developed model could account for predicting over 70% of the 

variation in corrosion data, outperforming linear regression models developed using the 

same dataset. 
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Few models using machine learning for prediction conduct a directed study on how a 

certain set of factors can influence the rate of corrosion over time for the oil and gas industry, 

in field conditions. In this environment, corrosion is greatly accelerated and directly depends 

on the marine atmosphere, which enhances the corrosion process due to its environmental 

conditions. Lyon (2010) states that while corrosion begins to occur in the earth's atmosphere 

from a relative humidity of 75%, in marine atmospheres, it begins to occur from 33% relative 

humidity. Therefore, the use of machine learning prediction models for predicting corrosion 

and how the factors present in an oil and gas platform directly impact its progression is of 

fundamental importance. 

The random forest model, a machine learning model that can be used to create 

estimates and predictions through a process that aggregates information over a series of 

decision trees, implies less overfitting than a single decision tree model. However, unlike tree 

models that are easy to visualize, Random Forest models are not easily visualized but can 

produce an importance ranking for each possible predictor and can be easily displayed 

graphically (Buskirk, 2018). Like tree methods, the random forest model can handle 

predictors that are continuous, categorical, skewed or sparse data; missing data must be 

handled before applying the model (Strobl et al., 2007). It can also be very effective at 

estimating results that are complex functions of data with many interactions (Mendez et al., 

2008). 

The application of the Random Forest model in the field of machine learning has a wide 

range of research conducted for various areas, such as the medical field, where, for example, 

Parameswari et al.(2022) conducted studies related to Alzheimer's disease with Random 

Forests for classification, or studies related to pollution, where (He et al., 2022) conducted 

studies using Random Forests for classification as well. Nevertheless, few studies use the 

Random Forest model for regression related to the study of corrosion progression, providing 

a numerical value of the corrosion rate, as shown by Diao et al. (2021), in the article about 

improving the corrosion rate prediction and Zhi et al. (2021) about improving corrosion 

prediction, taking into account environmental factors. Thus, it is evident that knowledge of 

the behavior of corrosion progression over time is quite relevant information because it 

allows for the development of a more assertive and realistic painting plan for each oil and 

gas platform. Understanding how the factors that influence corrosion progression operate 

is crucial for maintaining the integrity of the platforms, minimizing maintenance costs. 

In this context, the purpose of this study is to develop a model based on the random 

forest to predict the annual progression of the corrosion rate and evaluate which of these 

identified factors had the most influence on this result. To this end, the specific objectives of 

this paper consist of: (i) identifying the main factors that can influence the behavior of 

corrosion in FPSO offshore platforms; (ii) selecting factors based on the 

availability/accessibility of measurements and the degree of reliability/precision of these 

measurements; (iii) proposing and applying a machine learning model that can predict the 

annual progression of corrosion in FPSO offshore platforms from the selected factors; and 

(iv) comparing the Random Forest model with the XG Boost model. In addition, it also aims 

to provide data to assist companies that plan maintenance focused on mitigating corrosion, 

promoting understanding of how influencing factors in corrosion act so that it is possible to 

maintain the integrity of industrial units and develop more accurate painting plans. 

  

2. BACKGROUND 

In general terms, Machine Learning (ML) is the evolution of computational algorithms 

that can mimic human intelligence through learning provided by the environment (El Naqa 

and Murphy, 2015). ML emerges from the intersection of computer science and statistics and 

is at the center of artificial intelligence and data science. It is notably one of the technically 

relevant fields nowadays, given its usefulness in various areas, such as marketing, 

investments, manufacturing, and telecommunications, for example (Fayyad et al., 1996). 

Machine learning systems are generally divided into three categories: supervised 

learning, unsupervised learning, and reinforcement learning. In supervised learning, the 

learning content usually includes labeled inputs and outputs and predicts new outputs from 
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new inputs. In unsupervised learning, the algorithm does not learn from labeled data; it tries 

to find patterns in the dataset. Reinforcement learning is closer to supervised learning. The 

difference is that the reinforcement learning program does not learn from labeled output 

but gives feedback on the decision (Rajendra et al., 2022). Figure 1 shows a generic step-by-

step description of a machine learning model construction described by (Vieira et al., 2020), 

as follows: 

• Formulation, which consists of defining the problem and the guiding questions of 

the study; 

• Preparation of the database, which consists of selecting and processing the 

available data of the problem (e.g., transforming numeric variables into categorical 

and vice versa); 

• Creation of variables, at this stage, new variables (or features) are generated from 

the available data; 

• Division of the data into subsets of training, testing, and validation; 

• Training, this stage is dedicated to finding relationships between the variables 

being modeled from the selected available data for training; 

• Model validation, this stage is dedicated to evaluating the model's performance 

from the selected available data for model validation, therefore seeking to identify 

the accuracy of the model; 

• Analysis, which consists of analyzing the result obtained through pre-established 

metrics. 

 
Figure 1 - Machine learning steps. Adapted from (Vieira et al., 2020) 

 

In summary, supervised machine learning can be operationalized through several 

techniques, the most commonly used being classification and regression. For each of these 

techniques, there are specific calculation rules associated with them, which are called 

algorithms. Therefore, the choice of an algorithm is a crucial part of the machine learning 

process. There are many types of learning algorithms, some of the most common being 

Naive Bayes, Decision Trees, Random Forests, Artificial Neural Networks, Support Vector 

Machines (SVM), among others (Rajendra et al., 2022). 

The algorithms known as decision trees and random forests are highlighted in the 

present study. According to (Gupta et al., 2017), the decision tree model is very intuitive, so 

that in the tree-building process, all features are traversed and the feature with the highest 

importance is selected as the splitting node until there are no remaining features in the 

dataset for further splitting. Thus, the impurity from the root node to the leaf node gradually 

decreases. Analysis using the decision tree model is based on the construction of trees that 

can be used to visually and explicitly represent decisions. In order to minimize the high 

variance generated in the data from the decision tree method, the Random Forest method 

is used, which considers a set of different decision trees for calculation. 

Random Forest (RF) is a method that uses a combination of many decision trees and 

selects the average prediction of the results as the output variable (Breiman, 2001). The 

method involves training different decision trees on separate generated data samples, 

combining the learning of these trees to produce the final result. In the decision-making 

process, the trees do not interact with each other during training. Therefore, different 

samples are generated to train the decision trees, dividing a set of features into several 

subsets while keeping a percentage of features in each subset. This step ensures that the 

model does not depend on any individual feature and uses all features productively (Liaw 

and Wiener, 2002). 

The use of machine learning and random forest models is growing in the determination 

of corrosion rates over time, as demonstrated by Diao et al. (2021) in their article on 

improving corrosion rate prediction and Zhi et al. (2021) on improving corrosion prediction 

while considering environmental factors. 

   
Problem 

formulation   
Database 

preparation   
Variable 
creation   

Model 
training   

Model 
Validation   Analysis 
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In the article by Diao et al. (2021), marine corrosion data of low-alloy steels were collected 

and prediction models for corrosion rates were developed using machine learning 

algorithms. According to them, both the chemical composition of the low-alloy steel and 

environmental factors were used as input features, and the Random Forest algorithm was 

used for modeling and determining corrosion rates. Thus, two methods for creating features 

were proposed to convert the information of the steel's chemical composition into a set of 

atomic and physical property features. 

As a result, the developed method created a model no longer limited to materials with 

specific chemical compositions. Therefore, machine learning-based corrosion rates showed 

good accuracy in predicting corrosion rates. The study improved the generalization ability of 

the model and proved the feasibility of machine learning in evaluating corrosion behavior. 

In the article by Zhi et al. (2021), models for atmospheric corrosion prediction were 

constructed based on the corrosion rates of carbon steel and twelve environmental factors 

from long-term exposure tests. A hybrid method combining the Random Forest model and 

Spearman Correlation was used, compared with the maximum information coefficient (MIC) 

and principal component analysis (PCA). Then, the support vector machine (SVM) method 

was applied using the identified key environmental factors, presenting higher accuracy than 

those with dimensionality reduction by MIC and PCA. Dimensionality reduction also 

significantly improved the accuracy and generalization of the SVM model. 

 

Table 1 - Literature review of factors influencing the advancement of  

 corrosion 

Factors References 

Influence of time 

Age of the component 

(American 

Petroleum 

Institute, 2009; Wu 

et al., 2013) 

Failure rate 

(American 

Petroleum 

Institute, 2009) 

Maintenance history 

(American 

Petroleum 

Institute, 2016) 

Element 

information 

Component geometry 

(American 

Petroleum 

Institute, 2009) 

Dissimilar metals 
(St. Clair and Sinha, 

2014) 

Material 

(American 

Petroleum 

Institute, 2016, 

2009; Cai et al., 

2018; Dawson, 

2010; Wu et al., 

2013) 

Piece orientation (Lyon, 2010) 

Equipment function (Dawson, 2010) 

Acting stresses 

(American 

Petroleum 

Institute, 2016; St. 

Clair and Sinha, 

2014) 

Operating temperature 

(American 

Petroleum 

Institute, 2009; Wu 

et al., 2013) 
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Surface temperature 

(American 

Petroleum 

Institute, 2016; 

Macha et al., 2019) 

Production interruption (Wu et al., 2013) 

Information 

about the 

corrosive 

Ambient temperature 
(Cai et al., 2018; 

Lyon, 2010) 

Air contaminants 

(Bento et al., 2009; 

Cai et al., 2018; 

Lyon, 2010; Macha 

et al., 2019) 

Humidity 

(Bento et al., 2009; 

Cai et al., 2018; 

Lyon, 2010; Macha 

et al., 2019) 

Information 

about the fluid 

Pressure 

(American 

Petroleum 

Institute, 2016, 

2009; Dawson, 

2010; Wu et al., 

2013) 

Potential energy (Dawson, 2010)) 

Flow rate 

(American 

Petroleum 

Institute, 2009) 

Fluid composition 

(American 

Petroleum 

Institute, 2016, 

2009) 

Fluid physical state 

(American 

Petroleum 

Institute, 2009) 

Painting 

Painting area (Cho, 2020) 

Surface roughness 

(Bento et al., 2009; 

Nor Asma et al., 

2011) 

Paint type 

(American 

Petroleum 

Institute, 2009) 

Location 

Lighting condition (Chen et al., 2010) 

Sun exposure 

(American 

Petroleum 

Institute, 2009) 

Wind incidence (Lyon, 2010) 

Equipment access 
(Dawson, 2010; Wu 

et al., 2013) 

Influence area (other 

equipment) 

(American 

Petroleum 

Institute, 2009; 

Dawson, 2010) 

Influence area (personal safety) 

(American 

Petroleum 

Institute, 2009; 

Dawson, 2010) 
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Influence area (environmental 

impact) 

(American 

Petroleum 

Institute, 2009; 

Dawson et al., 

2010) 

Corrosion position (Lyon, 2010) 

Cost Equipment value 

(American 

Petroleum 

Institute, 2009; 

Dawson, 2010) 

Source: the authors themselves. 

3. METHODOLOGY 

 

Building a model to determine the progression of corrosion over time requires a 

thorough study of the main factors that influence this behavior, as recommended in ISO 

9223 (British Standards Institution, 2012). This standard state that the nature and speed with 

which corrosion occurs in metals, alloys, and coatings, among other factors, also depend on 

the properties of the electrolytes formed on the surface, particularly with respect to the level 

and type of gaseous and particulate pollutants in the atmosphere and the duration of their 

action on the metal surface. 

Based on the mentioned issues, a case study was carried out using data from four ship-

type offshore platforms, whose design configurations were similar, meaning that the overall 

arrangement of all modules was the same. This study consisted of the development an 

experiments using the Random Forest model, and a comparison was between the model 

used and the XG Boost model. 

 

3.1 Data acquisition and description 

To conduct the study, it was necessary to survey several factors that influence the 

progression of corrosion, shown in Table 1. In addition, as illustrated in Table 2, interviews 

were also conducted with maintenance professionals with a focus on corrosion, who 

reported the main factors considered in the study, such as those that have the greatest 

impact on the progression of corrosion. 

 

Table 2 - Experts who participated in the interview about factors that influence  

the rate of corrosion 

Experts Position Experience 

Expert 1 Paint Inspector 

Has been working as a 

paint inspector for more 

than 5 years 

Expert 2 Paint inspector 

Has been working for 

more than 5 years as a 

paint inspector 

Expert 3 Planning Technician 

Has worked for more 

than 5 years planning 

painting works 

Expert 4 Equipment Inspector 

Has worked for more 

than 5 years as an 

equipment inspector 

Expert 5 Planning Technician 

Has worked for more 

than 5 years as service 

planning and 

management 
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Expert 6 Petroleum Technologist 

Has been working for 

more than 5 years with 

technical engineering 

documentation 

Expert 7 Chemical Engineer 

Has been working for 

more than 5 years in 

corrosion management 

Expert 8 Civil Engineer - Consultant 

Has worked for more 

than 5 years as 

coordinator in the 

inspection of naval 

structures 

Expert 9 Planning Engineer 

Has been working for 

more than 5 years in 

corrosion management 

Expert 10 Manager 

Has been working for 

more than 5 years 

managing maintenance 

teams 

Expert 11 
Electrical Engineer - 

Coordinator 

Has been working for 2 

years as coordinator in 

the painting area 

Expert 12 Oceanographer 

Has been working for 

more than 5 years in the 

climatic factors 

monitoring area 

Expert 13 Economist - Consultant 

Has been working for 2 

years in the area of 

costs related to 

corrosion 

 Source: the authors themselves. 

 

The factors listed in Table 1 were validated via interviews with the experts listed in table 

2. However, not all of them could be easily obtained in practical terms, so that only a few 

were actually considered for the study. One of the main reasons for this difficulty was 

because of the lack of historical data records for all the variables surveyed at the time of 

painting.  

The group of factors considered were: (i) ambient temperature, relative humidity, wind 

speed, and preferential wind direction - obtained through a corporate portal that monitors 

these information hourly for each platform - , (ii) platform, id (location data on the platform, 

represented by module and sector),  and system - specific design data for each platform that 

are obtained through their general arrangements -, (iii) and inspection year, percentage of 

corrosion, and annual corrosion rate - data collected from annual inspections conducted 

through ships and are collected by painting system. 

The information on the percentage and advancement of corrosion was obtained at the 

system level, which is the smallest subdivision of the platform (platform > module > sector > 

system), while the data obtained from the corporate portal, such as ambient temperature, 

relative humidity, and wind speed, were generally obtained for the platform. Therefore, for 

all systems on a platform, it was considered that the data on ambient temperature, relative 

humidity, and wind speed remained constant throughout the year for the same platform.  

Regarding the design data of the platform, it was only necessary to consult the general 

arrangement of each one of them, because in this drawing it is indicated the division of the 

existing modules and sectors within a platform. In addition to the arrangement data, the 

names of the systems were also considered, because according to the interviews conducted 

with the experts cited in Table 2, they corrode differently, either by their conformation, which 
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causes difficulty in ensuring that the paint film can fill the part completely, as is the case of 

supports, valves and flanges, or because it is a region that has a greater tendency to suffer 

mechanical damage, as is the case of the loading floor 

Regarding the inspection data, all four platforms considered in the study have data on 

the percentage of corrosion, which were obtained through annual inspections from 2014 to 

2018, following the physical division of the platform. Finally, since the predicted variable is 

the corrosion advancement, the difference between the corrosion in the inspection year and 

the previous year was calculated to list how much the corrosion has advanced over the year. 

Below is a summary of the information that was used as input data for the model: 

• Platform: classified as categorical variables such as Platform A, Platform B, 

Platform C, and Platform D, all of them FPSO type; 

• Id: classified as categorical variables indicating the location of each module on the 

platform; 

• System: classified as categorical variables, following the following classification: 

ceiling, floor, support, metal structures, handrail, stairs, equipment, bulkhead, and 

PVF (pipes, valves, and flanges); 

• Inspection year: are the years that have information on corrosion inspection, 

namely 2014, 2015, 2016, and 2017; 

• Percentage of corrosion: varies from 0 to 100%; 

• Corrosion advancement: is calculated from the percentage of corrosion, so that in 

the first year considered in the study (2014), all advances were 0, and from then 

on, in the following years, the advancement was calculated as follows: 

𝑎𝑑𝑣𝑎𝑛𝑐𝑒 =  𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑦𝑒𝑎𝑟 𝑖+1 − 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑦𝑒𝑎𝑟 𝑖.  It is important to note that this 

information was only present in case 04 of the case study; 

• Ambient temperature, Wind speed, and Relative humidity: to determine this data 

on each platform over the year, a corporate portal was consulted, which stores the 

historical data, whose information was collected on the first day of each month per 

year, and the values considered were the average of the annual data; 

• Wind direction: for the use of this information in the model, the wind directions 

were divided according to the compass rose into four classes: North, West, East, 

and South, and this information was collected on the first day of each month per 

year, and the value considered for analysis was the direction that had the highest 

frequency in that year. 

 

3.2 Machine learning approach and analysis 

The research used the supervised ML approach with ensemble learning, which uses 

multiple learning algorithms to achieve better prediction performance compared to using 

any single learning algorithm. Supervised learning can be seen as a search in a hypothesis 

space to find a suitable hypothesis that will make good predictions for a specific problem. 

The ensemble learning model used in this study was the random forest (RF) method, which 

is a popular method used to generate classification and regression models (Zhao et al., 2022).  

The RF method constructs a multitude of decision trees using the training set and 

produces the mode of the class (for a classification problem) and the average prediction of 

the individual trees (for a regression problem). The goal of reducing variance comes at the 

cost of a small increase in bias and some loss of interpretability. However, this greatly 

increases the final model performance and also corrects the problem of overfitting, which is 

a common occurrence in decision trees. The general bootstrap or bagging aggregation 

technique is implemented in the training algorithm. 

Breiman (2001) introduced the concept of RF models, comprising multiple decision trees 

that are randomly selected and combined to produce a more accurate prediction output. 

The aim of the RF model is to reduce the variance of bagging by minimizing the correlation 

between the trees without increasing the variance too much, which is achieved mainly 

through the random selection of features, also known as input variables or features, 

mentioned when splitting the database. Another advantage of RF is its ability to measure the 

importance of these variables, which is calculated by how much each one contributes to 
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reducing the variance. 

In RF applications for regression (random forest regressor - RFR), bootstrap samples are 

created from the original dataset to build a network of decision trees, whose outputs are 

calculated to form the estimate of the response variable. Random subsets of predictor 

variables are used to split each decision node, which, in addition to the randomness of the 

bootstrap sampling, leads to better predictive performance. In addition, the large number of 

decision trees (n = 100 here) created in each model avoids overfitting, which means that the 

ML model can get a good fit effect by training data in the database but cannot fit data well 

by training data outside the database. To avoid the overfitting phenomenon, test sets and 

cross-validation tests are introduced. The proportion of training set, cross-validation test, 

and test set can be changed according to ML and R2 models. 

R2 is employed to evaluate the predictive ability of various ML models (0 ≤ R2 ≤ 1), and 

represents the quality that an ML model trains its own dataset, as the ML models need to be 

used to predict new data. The model error is quantified by the average of the prediction 

results of all trees using out-of-bag (OOB) data (i.e., data not included in the bootstrap 

sample). The importance of the predictor variable can be determined by permuting a 

particular variable in the OOB data (and keeping all others constant) and calculating the 

increase in root mean square error (RMSE) compared to the original data. 

Initially, there was the generation of the database, consisting of five stages: platform 

selection, historical data collection, calculation of annual progression, identification and 

selection of factors that affect corrosion, and input of data related to the factors. After data 

collection was completed, the next step was to preprocess the dataset to transform raw data 

into a comprehensible format. The dataset contained both categorical and continuous 

variables that required additional processing to be converted into a meaningful and 

standard form. Subsequently, the dataset was split into training and testing sets using an 

80% vs. 20% ratio (Mokarian et al., 2022). 

Because different machine learning models exhibit various advantages and different 

predictive abilities on different datasets, even for a similar dataset, due to their respective 

characteristics, it is important to train the dataset with the appropriate ML model (de Paula 

Vidal et al., 2022b; Kaiser et al., 2022; Tang et al., 2022). In this research, RFR was selected 

because it provides not only predictive models, but also a deeper understanding and 

valuable information about the relative importance of different variables that affect overall 

accuracy. The RFR model provides a fair assessment of importance among parameters. The 

importance score of the input features (independent variables) calculated by the RFR is 

represented; it defines the importance of independent variables in estimating the 

dependent variable. The importance score indicates the predictive power of the parameters. 

Evaluating the feature importance score helps maximize the efficiency of a predictive model 

by providing sufficient understanding of the data and the model, as well as providing useful 

information necessary for dimensionality reduction and feature selection (Mokarian et al., 

2022). 

For the case studied, data was preprocessed, varying the encoding of categorical 

variables and performing normalization. Also, two methodologies for optimizing 

hyperparameters related to the Random Forest algorithm were also analyzed, namely, Grid 

Search and eXtreme Gradient Boosting (XGBoost),in addition to evaluating the differences in 

the model's behavior when evaluating the entire dataset together or separately for each 

platform. Finally, an evaluation of the importance of factors related to corrosion progression 

was conducted in order to understand the behavior of corrosion over time. 

For the data preprocessing steps, algorithm training, and results evaluation, the Scikit 

Learn library (Pedregosa et al., 2012) developed in Python 3 (van Rossum and Drake, 2009) 

was used. A computer with an Intel(R) Core(TM) i5-8400 CPU and 16GB of RAM was used for 

testing purposes. 
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4. CASE STUDY 

4.1 Case description 

A major bottleneck in the planning process for painting the operational units is the 

prediction of corrosion behavior over time. Currently, an average advancement value is 

considered for the entire platform, depending solely on the type of corrosion, 0.5% in cases 

of mild or moderate corrosion, and 3% in cases of generalized corrosion. However, this 

model is not consistent with the reality of an operational unit, as it does not consider the 

specificities of each region of the platform, subject to different climatic conditions, with 

diverse function and location characteristics. 

The oil company used in this study has been systematically visual inspecting the 

percentage of corrosion since 2016, presenting a vast history of data indicating the average 

percentage of corrosion by region of the platform, divided into module/sector/system. 

Therefore, it was decided to explore this data history to generate an artificial intelligence 

model capable of predicting the advancement of corrosion over time for each system of the 

platform, considering the inspection data history carried out over the years and factors that 

influence the behavior of corrosion, such as climate, location, and function factors, raised in 

a technical report from the company that operates the platform (Tecgraf Institute/PUC-Rio, 

2021). 

This study can be classified as a regression problem, in which a specific value is desired 

to be estimated based on various factors. In the literature, there are various algorithms for 

regression, such as Naive Bayes, Decision Trees, Random Forests, Artificial Neural Networks, 

among others (Rajendra et al., 2022). In this study, the random forest (RF) method (Breiman, 

2001) was chosen, as mentioned in the methodology section. 

A case study considering four platforms was conducted. It is worth noting that although 

the model was limited to evaluating FPSO platforms, the methodology developed in this 

study can be replicated for other platform models. 

4.2 Experiment 

The case study conducted contemplated an experiment, with the main objective to to 

compare the model that was applied from Random Forests with XG Boost.  

Based on the factors that influence corrosion, as described in the previous section, a 

database was built to predict the advance of corrosion. The predicted variable was the 

advancement of corrosion. A variability in one of the factors that influence the advance of 

corrosion was used, improving the accuracy of the model versus initial tests conducted. 

Thus, in the following items the experiment that comprised the case study will be presented. 

One factor was crucial to the increase in performance metrics: the inclusion of annual 

advance information and its use for corrosion prediction. The variable predicted is the 

advancement of corrosion, using 2014 as the base year (e.g. advance = 0%), and the 

percentage of corrosion column served only as a variable that impacts the advance of 

corrosion, as do all the others. With the results obtained, other tests were made considering 

this same database. The Grid Search function was run, which aims to find the best 

hyperparameters of the sklearn.ensemble.randomforestregressor function in order to 

obtain better performance. 

It is important to note that in preliminary tests, the predicted variable was the 

percentage of corrosion, which did not bring such good results. In the experiment shown in 

this work, the predicted variable became the corrosion progression, which brought better 

results. Other tests were performed, however the results shown in this paper represent well 

the main milestones in the construction and application of the Random Forest model. 

Finally, a comparative analysis between the Random Forests and the XG Boost models 

was performed. To obtain the best performance of the Random Forests model, the Grid 

Search function was run with the data from the experiment, aiming to obtain the best 

sckitlearn hyperparameters. Then, the experiment was run again, but with the new 

hyperparameters, and a comparison with the XG Boost model was performed 
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5. RESULTS AND DISCUSSION 

In the experiment, data contained no missing data and a data proportion of 80% for 

testing and 20% for validation. The predicted value, as stated in previous sections, was the 

corrosion advancement. This was made precisely to determine how corrosion advances 

from the factors that impact it, rather than necessarily on the corrosion percentage 

information itself. 

Figure 2 demonstrates the results obtained in the experiment. Analyzing Figure 2a, the 

model provides information regarding variable importance, indicating wind speed as the 

most influential variable in corrosion percentage and the corrosion percentage itself. Such 

results are consistent because, according to the described in tables 1, 2 and the methodology 

section, wind speed information directly impacts corrosion percentage. 

In Figure 2b, the model makes a comparison between the observed y, which is the actual 

corrosion percentage, and the predicted y, which is the predicted corrosion percentage 

based on a 45° line, representing a perfect linear relation. It can be seen that the points are 

close to the line, which indicates a high precision in the prediction of corrosion advancement. 

In this case, Figure 2c indicates that both the 𝑅2value (0.975) for training and validation 

(0.812) are closer to 1, and the RMSE values also approached zero (0.0112 for training and 

0.0305 for validation). 

The value of 𝑅2 for the OOB set improved (0.810), and the RMSE was closer to zero 

(0.0309). In this case, the predicted value was already the corrosion advancement. 

 

 

(a) 
(b) 

Set RMSE    R2 

Testing 0.0112 0.975 

Validation 0.0305 0.812 

OOB (Out of Bag) 0.0309 0.81 

Computation time: 1.24 s 

(c) 

y_validation x y_predicted 

MAE (Mean 
Absolute Error) 

0.00856 

MSE (Mean 
Square Error) 

0.00932 

(d) 

Figure 2 - Results from experiment 

Source: the authors themselves. 

Caption:  (a) Percentage of variable importance results;  

  (b) Comparison between the predicted value of y and the value used in the 

model;  

  (c) Model performance metrics;  

  (d) Performance metrics of the predicted value. 

 

5.1 Comparative analysis 

Considering the same input dataset used in the experiment, which produced the best 

results, another adjustment was made. Aiming to improve the accuracy of the model, the 
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Grid Search function was run to find the best hyperparameters for the 

sklearn.ensemble.randomforestregressor function. As indicated in Table 3, in the "Default" 

column we have the default values used; in the GRID column, we have the results suggested 

by the model. 

 

Table 3 - Suggested hyperparameters by the GRID function with  

an 80%-20% proportion 

Hyperparameters Standard GRID 

n_estimators 100 500 

min_samples_leaf 1 1 

min_samples_split  2 2 

      Source: the authors themselves. 

Using the hyperparameters suggested by the GRID function, the results obtained were 

slightly better than when the default hyperparameters were used, making the change of 

n_estimators to 500, as illustrated in Figure 3. The only downside was the increase in 

computational time. 

Finally, a comparative analysis was performed between the Random Forest model with 

the hyperparameters from the Grid Search function and the XG Boost model, using the 

regression prediction. Table 4 describes the comparison of the results obtained, and it can 

be seen that the Random Forest model performed slightly better than XG Boost when 

analyzing R2. Anyway, even if the result of the XG Boost model with the hyperparameters 

from the Grid Search function was not compared, the Random Forest model would still have 

a better performance, despite requiring more computational time (3.07 s). 

 

Table 4 - Comparative analysis between Random Forest and XGBoost models 

Model RMSE R2 

Random Forest 0.0305 0.812 

XGBoost 0.0300 0.804 

     Source: the authors themselves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Results from the GRIDSearch function 

Source: the authors themselves. 

 

 
(a) (b) 

Set RMSE     R2 

Testing 0.0113 0.975 

Validation 0.0305 0.812 

OOB (Out of Bag) 0.0302 0.818 

Computation time: 3.07 s 

(c) 

y_validation x y_predicted 

MAE (Mean 
Absolute Error) 

0.00855 

MSE (Mean 
Square Error) 

0.00932 

(d) 
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Caption:  (a) Percentage of variable importance results;  

  (b) Comparison between the predicted value of y and the value used in the 

model;  

  (c) Model performance metrics;  

  (d) Performance metrics of the predicted value. 

 

6. CONCLUSIONS 

Based on the results obtained in this dissertation, it is concluded that the use of the 

Random Forest (Regression) machine learning model for the problem in question provided 

better accuracy, based on the analysis of the R2, RMSE, MAE, MSE, and OOB metrics. 

After a literature review, several studies were found in the literature using the Random 

Forest model for classification, however, few cases used the regression model for studies 

related to corrosion, and even those who did so considered controlled laboratory conditions, 

while the data used in this study were measured on oil platforms. Thus, the proposed work 

brings two contributions in the academic scope: (i) the use of Random Forest models 

(regression) for corrosion prediction, and (ii) the use of field data to conduct the study. 

When compared with other models such as XGBoost, the Random Forest model 

performed better when analyzing the R2 and RMSE metrics. Thus, for the Random Forest 

model, R2 = 0.812 and RMSE = 0.0305 were obtained when the GRID Search function 

hyperparameters were used. Therefore, the model requires little data pre-processing and, 

once constructed, it is only necessary to feed it with updated data so that the saved model 

can generate a new updated prediction. 

The objectives listed in the introduction were achieved, which made it possible to identify 

several factors that impact the advancement of corrosion, in addition to understanding how 

each factor acts more incidentally. These factors were, in descending order of importance: 

wind speed, corrosion percentage, and inspection year, where the higher the year, the longer 

that region has gone without any maintenance. 

Thus, it becomes possible to develop a more assertive maintenance plan for corrosion, 

since by predicting the painting of a particular region, it is only necessary to have knowledge 

of the incidence of the factors listed in this dissertation to better understand how corrosion 

will behave over the next year. If that region cannot be painted for any reason, it is possible 

to have knowledge of the progression of corrosion in that area for the next year. According 

to the result in this dissertation, it can be affirmed that for the next year, there will be an 

average annual progression of 2.43%, if there is no painting. 

Finally, it is important to emphasize that the constructed progression model has already 

been incorporated into a module of a prototype program of a large oil company that is in 

the finalization phase, however, it includes additional variables not mentioned in the 

dissertation, as it takes into account customized variables according to other types of 

platforms. Due to the structure with which the model was built, by using the same logic, 

several other factors can be selected and placed in the database. The model will return the 

same type of result, always indicating how corrosion will behave over time based on the 

factors selected by the user as influencing in corrosion advancement. 

 

6.1 Suggestions for further research 

Although an extensive survey was conducted on the factors that influence corrosion 

progression, many of them could not be used primarily due to the difficulty in acquiring 

information. This situation brought some limitations to the research, as other factors may 

also influence corrosion as much or even more than those indicated by the model as 

priorities. Therefore, to obtain better results, it is important to have an extensive database 

with information on the various factors that influence corrosion progression, such as system-

specific information, not just general information on wind speed, direction, and relative 

humidity, as well as information indicating when the last painting was done in the inspected 

area. 

Another issue is the subjectivity of the corrosion inspection process, as many corrosion 

https://doi.org/10.14488/BJOPM.1952.2023


Prediction of external corrosion rate in Oil and Gas platforms using ensemble learning: a Maintenance 4.0 approach 

 

Brazilian Journal of Operations & Production Management, Vol. 20, No. 3 special edition, e20231952 | https://doi.org/10.14488/BJOPM.1952.2023 

 

 

 

 

percentages decreased from one year to the next, and without historical information on the 

regions that were painted, it was impossible to guarantee if that inspection evaluation had 

some kind of error due to the process itself or not. Therefore, in these cases, this information 

was excluded from the database, reducing the input base and providing less information to 

the model. As an alternative to this subjectivity issue, the model can also be improved by 

using Fuzzy techniques. 

Furthermore, another factor that negatively impacted the results generation was the low 

variability of wind incidence, relative humidity, and temperature information, as the 

corporate portal from where the information was consulted only provided the measured 

value for the entire platform, while inspection information is recorded by the platform's 

system. In order to use the information, an approximation was made with this data, using 

the annual average of these data. For example, it is noticed that the application of variability 

in wind speed data brought an improvement in the evaluated metrics. 
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