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1 INTRODUCTION 

Customer demand is increasing in the modern world, and organizations strive to fulfill client 
satisfaction to the greatest extent possible. Nowadays, in order to supply products more efficiently 
to customers, many manufacturing organizations are forming a network of close and well-orga-
nized communications termed a supply chain in response to changing circumstances and techno-
logical advancements (Sabzevari Zadeh et al., 2014). The supply chain can be defined as the transfer 
of resources, information, and money between two or more companies, known in the supply chain 
as echelons, with the purpose of meeting customer needs (Chopra & Meindl, 2007). It not only in 
cludes all supply, purchase, and logistics management tasks but also involves working with distrib-
utors, vendors, intermediary companies, and customers, making the management of a supply  
chain a  difficult  task  for any company (Frazzon et al., 2019). 
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Supply chain management (SCM) is the technique of planning, controlling, and implementing 
the supply chain's operations efficiently (Melo et al., 2009). Companies try to make their supply 
chains work better by making the right number of products in the right place and getting the right 
product to the right customer at the right time and price, as well as in the right place, amount, and 
condition. SCM brings together important steps that start with the first suppliers and go on until 
the customers get the products, information, or services (Gumus et al., 2009).  

A supply chain network can be constructed to efficiently manage the whole supply chain. It is a 
complex entity comprised of suppliers, manufacturers, distributors, and retailers, as well as the 
systems, subsystems, activities, and operations that assist in the development of the supply chain 
and its relationships (Gumus et al., 2009). There are three types of decisions that need to be made 
in the SC network. They are strategic, tactical, and operational. SCND is a strategic type of decision 
for a longer time horizon. Making strategic decisions in SCND frequently requires large invest-
ments. These are extremely difficult decisions to alter and have a lasting effect on the operation of 
the supply chain. The most typical strategic decisions involve determining the optimal placement 
of facilities, and capacities of those facilities, allocating technology and space for processing and 
production of products at various sites, including choosing suppliers. SCND, alternatively referred 
to as strategic supply chain planning, is a stage in the supply chain management planning process 
that establishes the physical form and architecture of a supply chain. SCND has been deemed a 
good fit for facility location models for the past two decades. ReVelle et al. (2008) classified facility 
location models into four broad categories: continuous, network, discrete, and analytic. Despite 
their numerous variations, all of these models comprise a list of known consumers and a list of 
facilities whose sites ought to be given. The majority of SCND models fall under the discrete location 
model category (Melo et al., 2009). The transportation cost among different facilities and costs re-
lated to the facility largely depends on the facility's location. These long-term decisions might not 
be the same when the demand is uncertain. The appropriate location of a facility for a certain de-
mand might change with the change in demand. As a result, SCND, in the presence of uncertainty, 
has garnered considerable interest in recent years in both academics and practice. 

Establishing a supply chain network is a vital concern for every organization. Traditional distri-
bution of products and poor planning of facilities can increase the total cost as well as lower the 
level of service. In addition, uncertainty in demand makes it difficult for managers to plan the opti-
mal facility location, product distribution, and capacity allocation. The objectives of this research 
are,  

• To minimize the total transportation and facility costs. 
• To determine the optimal product flow. 
• To verify the robustness of the model using Monte Carlo simulation. 

This research is organized into seven segments, each with its own characteristics and purposes. 
The first segment offers a thorough description of the supply chain network, including the motiva-
tions, aims, and overall structure of the study. The second segment discusses prior research on the 
SCND model and several optimization techniques for dealing with demand uncertainty and also 
identifies the research gap. The third and fourth segments deal with describing the problem and 
formulating the model. In the fifth segment, a case study is introduced, and a snapshot of the data 
used to present the case study is also shown. The sixth segment displays the output of the model 
with a thorough explanation of scenario analysis, sensitivity analysis, and robustness test.  Finally, 
the significance of the research, as well as its potential future scope, are also discussed. 

 

2. LITERATURE REVIEW 

This section presents an overview of previous research on supply chain network design as well 
as a review of some approaches in optimization used to handle the uncertainty in the supply chain 
network. 

2.1 Supply Chain Network Design (SCND) 

SCND is focused on strategic decisions regarding the amount, location, size, and technology of 
new facilities, along with modifications to existing facilities and the selection of suppliers. Further-
more, it involves tactical decisions, which include manufacturing and shipping plans and product 
flows throughout the network (Salem & Haouari, 2017). SCND models are deterministic models and 
consider no stochastic data as input. The mixed-integer linear programming (MILP) method is one 
approach to solving SCND problems. Isaloo and Paydar (2020) presented a bi-objective mathemat-
ical programming approach for integrating the full chain's flows in order to increase performance 
in the plastic injection industry's variable conditions and reduce total expenses. Babazadeh et al. 
(2013) proposed a multi-stage and multi-product MILP framework to reduce the total cost where 
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the objective function is sensitive to fixed opening costs, consumer demand, and outsourcing ex-
penses. León-Olivares et al. (2020) and  Chipana-Surquislla et al. (2022) also utilized MILP models 
to decrease the total costs by selecting the optimal location of facilities. Some research (Salehi-
Amiri et al., 2021; Santander et al., 2020; Pourjavad and Mayorga, 2019) used MILP models to re-
duce the cost of the Closed-Loop Supply Chain (CLSC) network as well as make strategic and tactical 
decisions. Patidar and Agrawal (2020) formulated two MILP models, where the first model was used 
to minimize the total distribution cost and the second model was used to decrease post-harvest 
supply chain losses. Aras and Bilge (2018) performed a case study on a multi-national enterprise 
where the proposed MILP model was developed to reduce the overall cost and select the best lo-
cation. Robles et al. (2020) and da Silva et al. (2020) used MILP frameworks to construct hydrogen 
supply chain (HSC) networks by minimizing various cost components. Duong and Bui (2018) pro-
posed a mathematical model for a multi-item, two-echelon, and multi-period facility location prob-
lem. Manufacturing facilities and distribution hubs were chosen to open or not open at preset po-
tential places during each period of horizon planning. The system was designed as an MILP model 
with the goal of minimizing overall costs, which included transportation costs, inventory holding 
costs, and fixed expenses for establishing facilities. Gital Durmaz and Bilgen (2020) suggested a 
multi-objective MILP framework for biomass supply chain design and planning. The model was able 
to make both strategic such as optimal biogas facility locations and capacity, and tactical deci-
sions such as transportation network flow. To demonstrate the solution technique and viability of 
the model, a case study was utilized. Mohammadi Bidhandi et al. (2009) suggested an MILP frame-
work and also solution algorithm for multi-commodity, deterministic, and single-period SCND prob-
lems. The model made it possible to determine the appropriate sites and allocation of facilities at 
the same time. It combined the tactical decisions about supplier, factory, warehouse, and allocation 
of customers with the strategic considerations about facility selection. Sharifzadeh et al. (2015) 
used mathematical programming to optimize the supply chain for biofuels using fast pyrolysis. Un-
der uncertainty, an MILP model was developed to find the optimal supply chain design and opera-
tion. Ochoa Robles et al. (2018) used an MILP formulation to establish the hydrogen supply chain 
(HSC) network. In the HSC logistic model, a sensitivity analysis showed the most sensitive compo-
nents and their interactions. Cardoso et al. (2013) devised an MILP framework for planning and 
designing supply chains involving reverse flows that take into account manufacturing, distribution, 
and reverse logistics activities all at the same time. The approach was proved to be applicable by 
applying it to a real case study. 

2.2 SCND Under Uncertainty 

Uncertainty is a fundamental feature of reality. Different unknown parameters might create sig-
nificant difficulties for decision-makers when confronted with an SCND problem. They can have an 
effect on various aspects of a supply chain network problem, including the quantity of supply and 
demand characteristics. Thus, incorporating various uncertainties into decision-making models can 
provide decision-makers with a multitude of options to produce more realistic and dependable 
designs and results. There are several approaches to dealing with uncertainty that are used in prac-
tice. This section highlights previous studies utilizing some of the approaches for handling uncer-
tainty. 

2.2.1 Stochastic Programming 

This is where the uncertainty is defined by a known probability distribution, and the optimiza-
tion seeks to find the optimal anticipated value of that distribution that is viable for the majority of 
possible outcomes. Certain approaches employ a loss function to account for this uncertainty. For 
the perishable goods supply chain, Dutta and Shrivastava (2020) constructed an ideal supply chain 
network and distribution plan. Stochastic programming was used under demand, supply, and pro-
cess uncertainty. Fattahi et al. (2020) presented a two-stage stochastic program for SCND that op-
timized the location, allocation, inventory, and order-size decisions during disruption occurrences. 
Govindan and Fattahi (2017), Ma and Li (2018), and Yılmaz et al. (2021) also constructed two-stage 
stochastic programs under highly time-variable and stochastic requirements. The uncertainties in 
the supply chain network were also quantified using the multistage stochastic optimization prob-
lem expressed as the MILP model (Zahiri et al., 2018; Ghelichi et al., 2018; Almansoori and Shah, 
2012).  

 

2.2.2 Robust Optimization 

Robust optimization is a rapidly expanding field of study that enables the solution of a variety 
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of optimization problems when some of the variables are uncertain. Yahyaei and Bozorgi-Amiri 
(2019) used robust optimization techniques to protect a relief network design against uncertain 
conditions. Sangaiah et al. (2020) established a robust MILP model for estimating LNG sales over a 
specific time frame to reduce vendor costs under uncertainty. To test the model, several exemplary 
scenarios were solved under varying levels of uncertainty. Bairamzadeh et al. (2018) constructed a 
robust hybrid optimization model to handle epistemic, random, and deep uncertainties. Using a 
case study of the biofuel supply chain in Iran, the effectiveness of the proposed model was evalu-
ated. Lotfi et al. (2021), Prakash et al. (2020), Kim et al. (2018), Hasani et al. (2012), and Pishvaee et 
al. (2011) designed CLSC models using the robust optimization strategy for managing the uncer-
tainties in transportation, supply, and demand. Yavari and Geraeli (2019) and Qiu and Wang (2016) 
created innovative MILP robust models to reduce costs and pollution under demand and supply 
uncertainty. 

2.2.3 Simulation-Optimization 

The primary idea behind this approach is to use numerous replications to simulate various sys-
tem configurations in order to identify the best solution (Atalan & Dönmez, 2020). Pourhassan and 
Raissi (2017) proposed a dynamic facility design problem to increase material handling efficiency 
and reduce expenses. The number of possible transporter interactions was calculated using simu-
lation, and a non-dominated genetic algorithm for sorting was employed to discover the best ar-
chitecture that met the objective functions. Gholami-Zanjani et al. (2021) constructed a general two-
stage MILP model in a study to incorporate essential elements of location-allocation and inventory-
replenishment decisions. Then, plausible scenarios were used to incorporate food-specific disrup-
tions. Mavromatidis et al. (2018) and Belvardi (2012) utilized simulation-based optimization as well 
as sensitivity analysis of the supply chains to deal with modelling errors and the stochastic nature 
of the processes. The uncertainty analysis was performed using Monte Carlo simulations to quan-
tify the impact of uncertainties. Izadi and Kimiagari (2014) presented a three-echelon supply chain 
location allocation challenge to transport pharmaceuticals from a warehouse to consumers. This 
work aimed to solve a real-world model with an uncertain demand function. To account for the 
demand uncertainty, a set of possible consumer demand scenarios was generated using the Monte 
Carlo simulation. Zhang et al. (2019) established a multi-simulation MILP model based on Monte 
Carlo sampling to account for uncertainties in the natural gas purchase price and demand, which 
was utilized for simulation runs to produce several uncertain parameters.  

The literature review demonstrates that the MILP model is an effective method for reducing 
costs while making strategic and tactical decisions. It offers analytical solutions that can shed light 
on the internal operations of a supply chain. It can be useful for examining how various parts of 
the system are connected to one another, which is helpful for better decision-making. As MILP is a 
deterministic model, several approaches are presented in the review to take into account the un-
certainties. In this study, a MILP model is used in conjunction with the Monte Carlo simulation ap-
proach, which is extensively utilized in the literature to represent uncertainty, to design a robust 
three-echelon network in the presence of demand uncertainty.  

 

3. PROBLEM DESCRIPTION 

A multi-echelon single-period model is proposed in this study. This model represents a network 
comprising factories, warehouses, and distribution centers, as illustrated in Figure 1 where deci-
sions are rendered within a specific time interval. 
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Figure 1 - Supply chain network 

 
The products flow in the network in a forward direction. The distribution centers aggregate the 

customer demands and place the orders in the warehouses.  Factories use raw materials to create 
final products, which are then delivered to warehouses, from where they are distributed to distri-
bution centers. The products are distributed to retailers or directly to customers by distribution 
centers. Multiple warehouses can be used to fulfill the demand of a distribution center, and multi-
ple factories can ship products to a warehouse. Assumptions made by the network model include 
the following: 

• The model has three levels, which are the factories, warehouses, and distribution cen-
ters. 

• The potential locations of factories, warehouses, and distribution centers are known. 
• There is a fixed cost associated with the opening of a factory and a fixed cost associated 

with the opening of a warehouse. 
• Each factory has a production cost associated with it, and each warehouse has a han-

dling cost associated with it. 
• The transportation costs are deterministic throughout the time period. 
• Each factory and warehouse has a maximum production capacity and a maximum han-

dling capacity. 
• Factory and warehouse locations must be selected from a list of candidate locations. 
• The model specifies a maximum and a minimum number of factories and warehouses 

that can be opened. 
• All parameters have deterministic values. 
• The product flow is considered in the forwarding direction between two stages. 
• All demands should be satisfied. The model has a single product and a single time pe-

riod. 
 

4. NETWORK MODEL FORMULATION 

4.1 Sets 

The following are the sets of desirable facilities used in this study: 
S: Set of factories i 
W: Set of warehouses j 
D: Set of distribution centers k 

4.2 Model Parameters 

The following notations are used throughout the study to define the model: 
Cij: Inbound transportation cost from factory i to warehouse j  
Cjk: Outbound transportation cost from warehouse j to distribution center k 
fi: Fixed cost per period related to factory i 
fj: Fixed cost per period related to warehouse j 
Mi: Manufacturing cost per unit at the factory i 

      Factories                                     Warehouses                         Distribution centers 

 

 

 

 

 

 

 

 

 

 

 

                               Flow of products 
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Hj: Handling cost per unit at warehouse j 
Si: Capacity of factory i 
Wj: Capacity of warehouse j 
FPmax: Maximum number of factories allowed to open 
FPmin: Minimum number of factories allowed to open 
WPmax: Maximum number of warehouses allowed to open 
WPmin: Minimum number of warehouses allowed to open 
Dk: Demand of distribution center k 

4.3 Decision Variables 

The following decision variables are used in this research to define the model: 
Xij: Total number of products flowing from factory i to warehouse j 
Xjk: Total number of products flowing from warehouse j to regional warehouse k 
Yi: Binary variable for factory i 
Yj: Binary variable for warehouse j 

4.4 Objective Function 

The objective function is to minimize transportation costs that include inbound transportation 
costs from factory i to warehouse j, outbound transportation costs from warehouse j to distribution 
center k, and fixed costs and variable costs associated with factory i and warehouse j. It is defined 
as: 

Min z = [∑i∑j CijXij+∑j∑k CjkXjk] + [∑i fiYi+∑j fjYj] + [∑i∑j MiXij+∑j∑k HjXjk]                                                (1) 
Here, z represents the total transportation costs and facility costs. 

4.5 Constraints Related to the Model 

The constraints subject to the mixed-integer linear programming model are given below: 
∑jXij ≤ Si   ∀i ∈ S         (2) 
∑kXjk ≤ Wj   ∀j ∈ W         (3) 
∑iYi ≤ FPmax                                  (4) 
∑iYi ≥ FPmin           (5) 
∑jYj ≤ WPmax                         (6) 
∑jYj ≥ WPmin                         (7) 
∑iXij-∑kXjk=0  ∀j ∈ W                       (8) 
∑jXjk ≥ Dk  ∀k ∈ D         (9) 
Xij-MijYi ≤ 0  ∀i ∈ S, ∀ j ∈ W            (10) 
Xjk-MjkYj ≤ 0  ∀j∈ W, ∀k ∈ D                      (11) 
Yi,Yj ={0,1}  ∀i ∈ S, ∀j ∈ W        (12) 
Xij,Xjk ≥ 0  ∀i ∈ S , ∀j ∈ W, ∀k ∈ D       (13) 
 
Equation (2) represents the capacity constraint of the factory. It implies that the level of product 

shipped from each factory to warehouses cannot exceed that factory's capacity. This constraint is 
true for each i in the set S. The constraint in Equation (3) is referred to as the warehouse capacity 
constraint. It implies that the level of product transferred from each warehouse to the distribution 
center cannot exceed the capacity of that warehouse. This condition is true for each j in the set W. 
Equation (4) implies that the total number of open factories cannot be greater than the maximum 
allowable number of factories that need to be opened. Equation (5) implies that the total number 
of open factories cannot be less than the minimum allowable number of factories that need to be 
opened. Equation (6) implies that the total number of open warehouses cannot be greater than the 
maximum allowable number of warehouses that need to be opened. Equation (7) implies that the 
total number of open warehouses cannot be less than the minimum allowable number of ware-
houses that need to be opened. Equation (8) is known as the conservation of flow constraint, which 
implies that the amount of product distributed from factories to a warehouse is equal to the 
amount of product distributed from that warehouse to the distribution centers, for all warehouses. 
Equation (9) is the demand constraint, which implies that the number of products delivered from 
warehouses to a distribution center cannot be less than the quantity demanded by that distribution 
center, for all distribution centers. Equation (10) is the linking constraint, which indicates that any 
product cannot be delivered from a factory unless the factory is open. Equation (11) is the linking 
constraint that indicates any product cannot be delivered from a warehouse unless the warehouse 
is open. Equation (12) is the binary constraint, which implies the value of Y i/Yj is 1 if the facto-
ries/warehouses are open or the value is 0 otherwise. Equation (13) is the non-negativity constraint 
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that indicates that the product quantity delivered from factories to distribution centers cannot be 
negative. 

4.6 Level of Service 

Two metrics are used to determine the service level of the supply chain network. The first metric 
is average distance and the other metric is allowable distance. 

∑ (
𝑑𝑗𝑘𝑋𝑗𝑘

∑ 𝐷𝑘𝑘
)𝑗𝑘                (14) 

∑ (
𝑎𝑗𝑘𝑋𝑗𝑘

∑ 𝐷𝑘𝑘
)𝑗𝑘           (15) 

Equation (14) represents the average distance metric, which is the average weighted distance 
from the warehouses to distribution centers. Here 𝑑𝑗𝑘  is the distance to distribution center k from 
warehouse j in kilometers for all j and k. The allowable distance metric is shown by equation (15), 
which indicates the percentage of demand that is within 1300 kilometers of a warehouse. Here, the 
value of 𝑎𝑗𝑘 is 1 if distribution center k to warehouse j is less than 1300 kilometers or zero otherwise, 
for all j and k. 

 

5. CASE STUDY 

The proposed model is validated in this study using a case study on a multinational sporting 
goods retailer against multiple scenarios through simulation and utilizing sensitivity analysis. The 
supply chain network consists of factories that manufacture products and ship them to warehouses 
known as continental warehouses (CWHs), which distribute them to other distribution centers 
known as regional warehouses (RWHs). Products are delivered to stores or directly to customers 
from these regional warehouses. In this study, data on a single product, designated SKU-1, is gath-
ered through interviews with managers and experts for use in the optimization model. The data 
contains facility data, such as costs and capacity of factories and continental warehouses, transpor-
tation data, such as inbound and outbound transportation costs, and demand data. Currently, the 
product is manufactured at three factories and then supplied through 2 CWHs to twenty-five RWHs. 
Table A1 in the appendix section shows a snapshot of the locations of the facilities. Due to the 
increasing demand, the company plans to open a new factory in Chennai, India, and a new CWH in 
Milan, Italy, to better meet the demand. A detailed study of the company is shown in the following 
section. 

5.1 Facility Data 

Facility data comprises basic information about two types of significant facilities: factories and 
CWHs. Each factory requires a set cost to open that is related to the  factory's operating and over-
head expenditures. The cost of manufacturing each unit also varies according to the location of the 
plants. The fixed costs, production costs, and capacity of each factory are listed in Table 1. 

 
     Table 1 - Capacity and cost of factories 

Factories 
Capacity 

(units/Week) 

Fixed Cost/Week 

(USD) 

prod. cost/Unit 

(USD) 

Dhaka, Bangladesh 144900 2905 0.851 

Chattogram, Bangladesh 144900 2460 0.864 

Dehradun, India 96600 2746 0.895 

Chennai, India 132750 3150 0.883 

 
 

The new CWH, which is to be opened in Milan, has the same capacity with a high fixed cost per 
week, as the operating cost in Milan is relatively higher.      Table 2 2 shows the related capacity, 
fixed cost, and handling cost of each CWH. 

 
     Table 2 - Capacity and cost of CWHs 

Continental Ware-

houses (CWHs) 

Capacity 

(units/Week) 

Fixed Cost/Week 

(USD) 

Handling cost/Unit 

(USD) 

Paris, France 300000 4859 0.0910 

Madrid, Spain 300000 4760 0.1168 

Milan, Italy 300000 5353 0.0890 
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5.2 Demand Data 

The demand data set comprises information on the quantity demanded of RWHs in various 
locations throughout Europe. The RWHs are located in twenty-five cities and eleven countries. Each 
RWH depicts the weekly demand of that region. The demand data for each RWH is calculated by 
averaging the previous twelve months' demand data for that RWH. Table A2 in the appendix pro-
vides an overview of demand data for RWHs located in various European regions. 

5.3 Transportation Data 

Inbound transportation costs are the costs associated with transporting a unit from the factory 
to CWHs. Inbound costs include the cost of carrying a unit from the plant to the production coun-
try's port, the cost of shipping by ocean, and the cost of transporting the unit from the destination 
port to CWHs. The cost of transporting a unit product from each of the four plants to the CWHs is 
displayed in Table 3. 

 
Table 3 - Inbound transportation costs from factories to CWHs 

Inbound Transportation costs($/unit) Paris, France Madrid, Spain Milan, Italy 

Dhaka, Bangladesh 0.2251 0.2248 0.2249 

Chattogram, Bangladesh 0.2246 0.2244 0.2245 

Dehradun, India 0.2185 0.2182 0.2184 

Chennai, India 0.2144 0.2142 0.2143 

 

The outbound transportation costs consist of the cost of transporting the products from each 
CWH to RWHs. The cost per unit per kilometer in Europe and the distances between each CWH and 
RWH are collected from reliable sources. The outbound costs from three CWHs to twenty-five RWHs 
are depicted in Table A3 in the appendix. 

The Excel OpenSolver is used to run the proposed optimization model. First, all the decision 
variables, the objective function, and constraints are used as inputs to develop the proposed model. 
The model is then solved using the CBC solver engine, which determines the minimized total cost.  

 

6. RESULT AND DISCUSSION 

6.1 Scenario analysis 

Two different scenarios are developed. The baseline scenario represents the current condition 
of the retailer company, which has three factories in Dhaka, Chattogram, and Dehradun, as well as 
two continental warehouses in Paris and Madrid, to satisfy the demand. In the optimal scenario, 
the MILP model selected the appropriate number and locations of facilities from all the available 
locations to minimize the total cost of the supply chain network. According to Table 4, the total 
supply chain cost for the baseline scenario is $515,249, which includes the opening of three facto-
ries in Dhaka, Chattogram, and Dehradun, as well as two CWHs in Paris and Madrid to meet total 
demand. In the optimal scenario, the model uses factories from Dhaka, Chattogram, and Chennai 
and all the CWHs located in Paris, Madrid, and Milan to serve the total demand by minimizing the 
total cost to $499,758. That means the total cost in the optimal scenario is reduced by 3.0 percent 
from the baseline scenario. The average distance in the optimal scenario is decreased by 22.9 per-
cent, and the percent weighted demand in 1300 kilometers is increased by 11.0 percent, showing 
a significant improvement in the level of service. 

 
Table 4 - Total optimized cost of the supply chain network 

 Baseline scenario Optimal scenario 

Total Cost $515,249 $499,758 

No. of factories to open 3 3 

No. of CWHs to open 2 3 

LOS - Avg. Distance (km) 881.25 679.43 

LOS - PctIn1300kms 78.60% 87.27% 

Demand 346005 346005 

Cost/unit $1.489 $1.444 
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In the baseline scenario, factories in Dhaka and Chattogram are operating at their full capacity, 

whereas the factory at Dehradun is running only at 58 percent of its total potential. The CWH in 
Paris is supplied from all three factories, Dhaka, Chattogram, and Dehradun, and serves 73.7 per-
cent of the total demand, but the CWH in Madrid is only supplied from Dhaka and serves 26.3 
percent of the total demand, which includes markets in Portugal and Spain. The model picked three 
factories, Dhaka, Chattogram, and Chennai, from the four possible locations in the optimal sce-
nario. Both factories in Dhaka and Chattogram are running at their full capacity, whereas the factory 
in Chennai only utilizes 42 percent of its total capacity. The model chose all of the CWHs in the 
optimal scenario. The factory in Chattogram is supplying all CWHs, while the factory in Dhaka is 
supplying only the CWH in Milan, and the factory in Chennai is supplying only the CWH In Paris. The 
CWH in Paris is serving 31.6 percent of the total demand, which includes the market in France, 
Germany, and the United Kingdom, the CWH in Madrid is serving the market in Portugal, Spain, and 
a portion in France which covers 26.3 percent of the total demand and the CWH in Milan is serving 
the highest portion which is nearly 42.2 percent of total demand and includes the market in Swit-
zerland, Poland, Italy, Romania, Austria, Ukraine and a portion in Germany. Table 5 and  

 
 

Table 6Table 6 successively list the quantity produced at each factory and the number of de-
mands served by each CWH. 

 
     Table 5 - No. of units produced at each factory 

 Baseline scenario Optimal scenario 

Dhaka, Bangladesh 144900 144900 

Chattogram, Bangladesh 144900 144900 

Dehradun, India 56205 0 

Chennai, India 0 56205 

% of total demand   

Dhaka, Bangladesh 41.9% 41.9% 

Chattogram, Bangladesh 41.9% 41.9% 

Dehradun, India 16.2% 0.0% 

Chennai, India 0.0% 16.2% 

 
 
 

Table 6 - Quantity demand served by each CWH 
 Baseline scenario Optimal scenario 

Paris, France 255110 109232 

Madrid, Spain 90895 90895 

Milan, Italy 0 145878 

% of total demand served   

Paris, France 73.7% 31.6% 

Madrid, Spain 26.3% 26.3% 

Milan, Italy 0.0% 42.2% 

6.2 Cost drivers of the model 

The total cost is broken down into individual cost drivers. The cost drivers consist of fixed costs 
associated with factories and CWHs, production costs, handling costs, as well as inbound and out-
bound transportation costs. Table 7 represents various cost drivers for both scenarios. 

 
      Table 7 - Cost drivers of the model 

 Baseline scenario Optimal scenario 

Total Cost $515,249 $499,758 

Factory fixed cost $8,111 $8,515 

Production cost $298,807 $298,133 

Inbound transportation cost $77,415 $77,165 

Outbound transportation cost $87,465 $67,435 

CWH fixed cost $9,619 $14,972 

CWH handling cost $33,832 $33,540 
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Production costs, inbound transportation costs, and outbound transportation costs are the 
three major cost drivers. The production cost is the largest contributor to the total cost, accounting 
for about 58 percent in the baseline scenario and 60 percent in the optimal scenario. The cost of 
inbound transportation is 15.02 percent in the baseline scenario and 15.44 percent in the optimal 
scenario. Outbound transportation costs accounted for about 17 percent in the baseline scenario 
and 13.50 percent in the optimal scenario. The Pareto analysis for various cost drivers contributing 
to the total cost of the supply chain network is shown in Figure 2 and Figure 3. 

 

 
Figure 2 - Pareto analysis for the baseline scenario 

 

 

 
        Figure 3 - Pareto analysis for optimal scenario 

6.3 Sensitivity Analysis 

Demand is increased by 25% for each RWH in both the baseline and optimal scenarios to assess 
the effect of demand on the cost functions. Here, the demands in RWHs are represented from D1 
to D25. The change in D22, which represents demand in Bucharest, Romania, increased the total 
cost most in the baseline or current scenario, which can be seen in Figure 4. The total cost increased 
by 1.8 percent more than the total cost in the baseline scenario, and the outbound cost increased 
by nearly 4 percent compared to the outbound cost in the baseline scenario. In the optimal sce-
nario, the total cost increased by 1.7 percent from the optimal cost with the increase of D22, which 
is depicted in Figure 5. The outbound cost is 3.7 percent higher than the optimal outbound cost, 
which impacts most on the total cost. In both scenarios, D22 shows a major impact on total cost, 
making it the most sensitive to changes in demand. The high volume of demand and the long dis-
tance from CWHs are the most likely causes of D22's sensitivity. 
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     Figure 4 - Total costs in baseline scenario for changing demands 

 

 

 
         Figure 5 - Total costs in the optimal scenario for changing demands 

6.4 Robustness Test 

Assessing the robustness of the model is accomplished by the use of Monte Carlo simulation. 
Demand is considered to be uniformly distributed. 140 scenarios are established, with each sce-
nario allowing for a 50 percent variation from the overall demand. The demand data for each sce-
nario is used as the input to run the model. The constraints from equations 4 to 7 are set to flexible 
while running the model. Total demand ranged from 266124 to 423556 in 140 simulated demand 
runs, with a median of 344236. All simulated demand scenarios result in the opening of the facto-
ries in Dhaka and Chattogram, suggesting that selecting these two factories as part of the network 
is a robust decision. The Chennai factory was operational 96.4 percent of the time and closed only 
when total demand decreased by more than 17 percent. The factory in Dehradun only opened 1.4 
percent of the time and only when total demand in Dhaka, Chattogram, and Chennai exceeded 
total capacity. The high production cost of the Dehradun factory increases the total cost of the net-
work and makes it unsuitable for the model. The CWHs in Paris, Madrid, and Milan are open for all 
simulated demand runs in the same manner as these three CWHs serve three distinct regions of 
Europe. As a result, the addition of a CWH in Milan is expected to make the network more robust.    
Figure 6 depicts the percentage of facilities opening during the simulated demand runs. 
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   Figure 6 - Percentage opening of facilities from simulated demand runs 

 

 
The 140 scenarios had total costs ranging from $385,281 to $613,814, with an average total cost 

of $497,282, which is within 0.5% of the optimal total cost. The unit cost fluctuates between $1.469 
and $1.422, remaining within a 2% margin of the optimal unit cost. Furthermore, it is also observed 
that as demand increases in any given region, the unit cost decreases. The increase in demand in 
Portugal, Spain, France, Germany, Italy, the United Kingdom, and Switzerland lowers unit costs 
more than the increase in demand in Romania, Poland, Austria, and Ukraine. When demand in 
Romania, Austria, and Ukraine was lower, the level of service increased. 

 

7. CONCLUSION 

Supply chain network design and development is one of the most complicated and specialized 
areas of industrial engineering, requiring consideration of both long- and short-term decisions on 
facility location, capacity allocation, transportation, production, product handling, and routing. To 
make things as simple as possible, these choices are typically made under predetermined condi-
tions. In addition, networks are typically designed using general models, regardless of industry. 
Most mathematical programming models are deterministic and vulnerable to changing demands. 
An MILP model for a three-echelon supply chain (factories, warehouses, and distribution centers) 
is proposed in this research that minimizes the total cost of the network, which includes fixed and 
variable costs associated with the facilities as well as transportation costs. To validate the model, a 
case study of a multinational retail company is presented, where the sensitivity analysis shows the 
total cost remained within a 2% range of the optimal total cost, showing the effectiveness of the 
model with changing demand. The reliability and robustness of the suggested model are evaluated 
by utilizing the Monte Carlo simulation side by side with the optimization model to make it applica-
ble over the long term when demand is variable. The average total cost derived from the output of 
the simulation shows approximately 0.5% deviation from the optimal total cost, indicating a math-
ematically robust model. The study also  

shows that the choice of facilities and product flows among the facilities for the manufacture of 
the products is mostly influenced by the variable costs of facilities. Depending on the types of prod-
ucts and the locations of the facilities, different cost drivers may have varying effects on the overall 
cost. Most of the time, demand surges compromise the outcome by raising the total cost, and tak-
ing uncertainty into consideration decreases the risk of unsatisfied demand by increasing the resil-
iency of the network. Prior to making crucial investment decisions, the management team can face 
a number of challenges, and this study proposes a methodological approach that can guide the 
decision-makers to solve these issues. The proposed model intends to aid managers in building a 
supply chain network with a corresponding structure and help them make better decisions where 
the level of service metrics enable the supply chain network to be monitored for service levels while 
satisfying demand. Additionally, sensitivity analysis assists managers in determining how to serve 
each demand region most effectively. Furthermore, using the simulation approach in conjunction 
with the optimization model makes the model more realistic and suited for designing a resilient 
supply chain network that simultaneously optimizes operations and withstands real-world fluctua-
tions and challenges. Future scholars will be able to use the concept as a road map for tackling 
increasingly intricate supply chain design issues. The suggested MILP model can be altered by re-
searchers by including new constraints—such as time, inventory, or sustainability constraints—or 
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by taking into consideration new variables. The following are possible prospective directions that 
future scholars can implement in their research: 

• Multiple commodities may be considered in the design of a supply chain network, en-
abling the model to address more storage issues in the warehouse and thereby making 
it more sophisticated.  

• Future researchers can construct a model with multiple objective functions to improve 
the model's quality. 

• Scholars may benefit from the use of stochastic programming, robust optimization, or 
metaheuristic approaches to solve the proposed supply chain network model, allowing 
for improved results with less computation time. 
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   APPENDIX: 

Table A1 - List of the locations of the facilities 
 Factories CWHs RWHs 

1 Dhaka, Bangladesh Paris, France Lisbon, Portugal 

2 Chattogram, Bangladesh Madrid, Spain Porto, Portugal 

3 Dehradun, India  Puente Genil, Spain 

4   Murcia, Spain 

5   Madrid, Spain 

6   Valladolid, Spain 

7 
  

Pau, France 

8   Toulouse, France 

9 
  

Paris, France 

10   Lille, France 

11   Frankfurt, Germany 

12   Dortmund, Germany 

13   Avry, Switzerland 

14   London, United Kingdom 

15   Newcastle upon Tyne, United Kingdom 

16   Berlin, Germany 

17   Poznań, Poland 

18   Łódź, Poland 

19   Milan, Italy 

20   Bologna, Italy 

21   Naples, Italy 

22   Bucharest, Romania 

23   Klagenfurt, Austria 

24   Vienna, Austria 

25   Kyiv, Ukraine 
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Table A2 - Quantity demanded per week in units 

SL. No. Regional Warehouses (RWHs) Demand 

1 Lisbon, Portugal 10162 

2 Porto, Portugal 19956 

3 Puente Genil, Spain 10560 

4 Murcia, Spain 11734 

5 Madrid, Spain 14125 

6 Valladolid, Spain 13270 

7 Pau, France 11088 

8 Toulouse, France 15605 

9 Paris, France 17840 

10 Lille, France 9636 

11 Frankfurt, Germany 10465 

12 Dortmund, Germany 12436 

13 Avry, Switzerland 8500 

14 London, United Kingdom 20550 

15 Newcastle upon Tyne, United Kingdom 22700 

16 Berlin, Germany 16796 

17 Poznań, Poland 8810 

18 Łódź, Poland 11016 

19 Milan, Italy 21400 

20 Bologna, Italy 17410 

21 Naples, Italy 12141 

22 Bucharest, Romania 19800 

23 Klagenfurt, Austria 7720 

24 Vienna, Austria 9060 

25 Kyiv, Ukraine 13225 
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Table A3 - Outbound transportation cost per unit 
 

Outbound Transportation 

cost($/pair) 
1 2 3 4 5 6 7 8 

  Lisbon, Portu-

gal 

Porto, Portu-

gal 

Puente Genil, 

Spain 

Murcia, 

Spain 

Madrid, 

Spain 

Valladolid, 

Spain 

Pau, 

France 

Toulouse, 

France 

Paris, France 0.5011 0.4483 0.4879 0.4590 0.3588 0.3267 0.2206 0.1824 

Madrid, Spain 0.1698 0.1695 0.1274 0.1147 0.0095 0.0645 0.1781 0.2378 

Milan, Italy 0.6311 0.5823 0.5536 0.4592 0.4710 0.4567 0.3224 0.2719 

 

9 10 11 12 13 14 15 16 

Paris, 

France 

Lille, 

France 

Frankfurt, Ger-

many 

Dortmund, Ger-

many 

Avry, Switzer-

land 

London, United 

Kingdom 

Newcastle upon Tyne, United 

Kingdom 

Berlin, Ger-

many 

0.0126 0.0654 0.1753 0.1730 0.1474 0.1784 0.2682 0.3109 

0.3700 0.4237 0.5381 0.5312 0.4346 0.5310 0.6210 0.6692 

0.2516 0.3084 0.1999 0.2593 0.1064 0.4197 0.4968 0.3041 

 

17 18 19 20 21 22 23 24 25 

Poznań, Poland Łódź, Poland Milan, Italy Bologna, Italy Naples, Italy Bucharest, Romania Klagenfurt, Austria Vienna, Austria Kyiv, Ukraine 

0.3758 0.4435 0.2432 0.3058 0.4529 0.6752 0.3523 0.3784 0.6836 

0.7340 0.8063 0.4690 0.5060 0.6147 0.9658 0.6187 0.7013 1.0418 

0.3677 0.4088 0.0046 0.0737 0.2212 0.5100 0.1520 0.2484 0.5961 
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