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ABSTRACT 

Goal: This research aims to investigate how to maximize the throughput and reduce the waiting time 
for oncological patients of a radiotherapy process. 
Design / Methodology / Approach: A case study was conducted to develop a simulation model 
integrated with optimization techniques, including an expert system to support everyday decision 
making in the operation. 
Results: The experiments demonstrated that the approach was able to identify better configurations 
of the process, improving productivity without deteriorating quality. Results also considered the 
future acquisition of a new linear accelerator allowing the operation to plan its ramp up accordingly. 
Another result is the devised tool to allow the operation to run its own simulation studies. 
Limitations of the investigation: The results are valid for processes with similar characteristics of 
the one studied in the present paper, closing the scope at the treatment stage. 
Practical implications: This work demonstrates the possibility of applying modern simulation 
techniques in radiotherapy, not only enabling improvements for the present situation but also 
integrating the model to the operation to support everyday decision making. 
Originality / Value: The number of details captured by the model is significantly higher than others 
studies. The integration of the methodology to the treatment process makes possible for the 
operation to continue benefiting from the model in a long term. 

Keywords: Discrete Event Simulation; Radiotherapy; Scheduling; Optimization; Cancer Clinics. 

1. INTRODUCTION AND BACKGROUND 
More than 14 million new cases of cancer are diagnosed globally each year, and among 

other types of treatment, radiotherapy (radiation therapy) has the potential to improve the 
rates of cure of 3.5 million people and provide palliative relief for an additional 3.5 million 
people (Jaffray and Gospodarowicz, 2015). The patient waiting time from the point of referral 
to the point of starting treatment is a major concern considering its relationship with the 
patient's overall survival and quality of life. In this context, there have been studies in the 
literature applying Operational Research techniques such as discrete event simulation 
techniques (DES) to find ways of reducing patient waiting time. 

Radiotherapy is a treatment that uses radiation to destroy or prevent the growth of tumor 
cells, control bleeding and pain, and reduce tumors that are compressing other organs. It is a 
treatment modality that uses ionizing radiation to eliminate the abnormal cells of a tumor or, 
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at least, to prevent its proliferation. During radiation therapy, some normal cells can also be 
damaged, but in this type of treatment, normal cells have a better ability to recover from 
radiation damage. External-beam radiation therapy is the most common type of treatment 
where a linear accelerator machine (linac) is used to aim high-energy rays at the tumor from 
outside of the body. 

Zubizarreta et al. (2017) report that the actual coverage of needs to provide full access to 
radiotherapy globally ranges from 34% in Africa to over 92% in Europe. There are more than 
7500 radiotherapy centers worldwide, and over 7000 additional centers needed which is 
evidence that maximizing the throughput of the existent centers has a great social and 
economic appeal, especially to developing countries where high gaps are found. 

In this context, this paper proposes a discrete-event simulation model for the treatment 
stage of a local radiotherapy center in Brazil. The objective is to understand through 
simulation and optimization techniques the relationship of the variables that impact the 
throughput and, consequently, the waiting time of the patients. 

The main contributions of this paper are: 
1. A higher number of details captured by the modeling of the treatment stage when 

compared with the related literature. 
2. The utilization of optimization techniques with simulation to better evaluate the process. 
3. The development of an expert system for the operation to support everyday decision 

making. 
Our literature review showed that a vast majority of papers modeling radiotherapy 

processes focus on modeling the whole process, which is a plausible attempt because it may 
provide insights about issues in any part of the process. On the minus side, we have identified 
flaws in these models that potentially affect their validity and reliability. Among many reasons, 
we quote the lack of precise data to properly represent the behavior of all steps (for instance, 
the duration time of all tasks and doctors’ shifts) and the lack of a rigorous statistical analysis 
both regarding the input and output data. By closing the scope in the treatment stage, we 
favor to capture in details all the nuances of the operation, not only analyzing the current 
situation and possible scenarios but also building a friendly tool that stays in the operation for 
its day-to-day routine, reinforcing the legacy of the present work. 

The paper is structured as follows. We give a literature review in Section 2 specifically 
related to radiotherapy, followed by the description of the simulation model in Section 3. Next, 
in Section 4, we present experiments and results regarding the validity of the model, tested 
scenarios, variables relationship, and optimization. We also explain the expert system built for 
the operation. Finally, the main findings and conclusions are highlighted in Section 5. 

2. LITERATURE REVIEW 
Operational Research and Production & Management techniques have been largely applied to 

hospitals operations (Chang Junior et al., 2019). In radiotherapy, simulation techniques have been 
applied over the years and the related literature is listed in Table 1 showing a classification based on 
the problem characteristics and situating this paper in the literature. 

Table 1 presents five categories where the first identifies the simulation technique used 
to model the process: DES (Discrete Event Simulation), SD (System Dynamics), MCS (Monte 
Carlo Simulation). The second category refers to the platform or software used to apply the 
simulation technique. The third category gives information about the scope of the studies 
where it is found that most of them (9 out of 16) approaches the whole radiotherapy process 
comprising the planning and treatment stages. Four papers are tackling the planning stage 
that includes the steps preceding the execution of the treatment as mentioned in Section 1. 
There are also studies approaching specific steps of the process: consultation step by 
Joustra et al. (2010), quality assurance by Pooya et al. (2014) targeting the verification points 
of the process, and the treatment stage by the current paper. 

The fourth category refers to the main output metrics used by the authors to assess 
different scenarios of the process, where 11 studies used directly the RTTT emphasizing their 
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concern with the patient waiting time to start radiotherapy sessions. The other studies focus 
on metrics that assess one specific part of the process but still related to the RTTT. Joustra et al. 
(2010) use the waiting time for the first consultant, and naturally, the longer it is, the longer it 
takes for the patient to start treating. Analogously, Pooya et al. (2014) study the time interval 
between incidents (TIBI) which is directly related to the RTTT. Also, the current paper by 
proposing solutions to maximize the throughput of the treatment stage contributing then to 
the reduction of the RTTT. 

Table 1: Literature classification based on the study characteristics 

Reference Technique Platform Scope Main outputs Main variables 
Munro and 

Potter (1994) 
MCS Excel 

planning & 
treatment 

RTTT demand 

Thomas et al. 
(2001) 

MCS C++ 
planning & 
treatment 

RTTT demand; machine quantity 

Thomas (2003) MCS C++ 
planning & 
treatment 

RTTT demand; machine quantity 

Proctor et al. 
(2007) 

DES Simul8 
planning & 
treatment 

RTTT 
demand, # oncologists, # 

technicians, # other resources 
Kapamara et al. 

(2007) 
DES Simul8 

planning & 
treatment 

RTTT 
demand, # oncologists, # 

technicians, # other resources 
Werker et al. 

(2009) 
DES Arena planning planning time 

capacity; # resources 
(therapists; physicists) 

Joustra et al. 
(2010) 

DES 
not 

mentioned 
consultation first consultant time 

# consultations; # regular and 
urgent patients 

Morgan et al. 
(2011) 

DES & SD 
not 

mentioned 
planning & 
treatment 

RTTT 
# oncologists, # technicians, # 

other resources 
Oddiraju and 
Mutic (2011) 

DES Arena planning RTTT incident stage; demand 

Pooya et al. 
(2014) 

DES Arena 
quality 

assurance 
TIBI; throughput incident stage 

Morgan et al. 
(2016) 

DES & SD 
not 

mentioned 
planning & 
treatment 

RTTT 
# oncologists, # technicians, # 

other resources 
Babashov et al. 

(2017) 
DES Simul8 

planning & 
treatment 

RTTT 
# oncologists, # technicians, # 

other resources 
Saberi and 

Awasthi (2019) 
DES Arena 

planning & 
treatment 

RTTT 
# oncologists, # technicians, # 

other resources 
Vieira et al. 

(2019). 
DES 

Siemens 
PLM 

planning RTTT 
# patients; push/pull 

scheduling 
Bauza and Chow 

(2019). 
MCS Matlab planning workload balance 

physicist on call 
schedule 

Current paper DES Arena treatment 
treatment waiting 
time; throughput 

scheduling; # technicians; 
demand; slot length for 

treatment 

Finally, the last category of Table 1 lists the main variables used in the experiments in 
which values have been changed to study their impact on the output variables. The level of 
demand (number of patients) and the number of resources such as therapists, physicians, 
technicians, and linacs are the most common variables studied. 

Among more recent papers, Morgan et al. (2016) give a valuable contribution by studding 
how SD can be used to support the DES model. While the SD model captures the dynamics of 
how the radiotherapy department responds to increasing referral to first treatment times, the 
DES model was used to provide more representative insights into the knock-on impact of 
altering the treatment time or the number of treatment fractions for different groups of 
patients. 
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Babashov et al. (2017) analyzed the radiotherapy planning process at the London 
Regional Cancer Program to determine the bottlenecks and to quantify the effect of specific 
resource levels with the goal of reducing waiting times. It was found that increasing the 
number of dosimetrists by one, reduced the mean RTTT by 6.55%, leading to 84.92% of 
patients being treated within the 14-calendar day target. Adding one more oncologist 
decreased the mean RTTT from 10.83 to 10.55 days, whereas a 15% increase in arriving 
patients increased the waiting time by 22.53%. 

Saberi and Awasthi (2019) is an extension of Werker et al. (2009) providing a broader view 
of the process. They suggest including palliative and radical priority patients at the beginning 
of the process helps to start the process treatment sooner for the patients who are palliative 
and close to the highest stages of cancer. 

Vieira et al. (2019) study the planning stage, especially the effect of two scheduling 
policies for the first irradiation session: pull strategy and push strategy. In the first strategy, 
the first session is set right after consultation; in the second, it is set after the planning stage 
has been completed. Results showed that increasing the pull strategy reduces the average 
number of patients starting treatment after their due date. 

Bauza and Chow (2019) applied Monte Carlo Simulation to study a specific variation of 
the problem that refers to the emergency radiotherapy in a cancer center. The objective was 
to improve the scheduling of the physicists by maximizing the workload generating fairer 
planning among the physicists. 

The literature review has also identified significant limitations in these works. 
Morgan et al. (2016) does not provide details of the simulation model and the software used 
to run the simulation. The input data is not listed, as well as the data collection method, and 
task times are estimated by interviews. Babashov et al. (2017) provide few details of the 
simulations model, using descriptive statistics but without the support of inferential statistical 
analyses such as hypothesis tests and regressions. According to the authors, because task 
times were not available through the tracking database, the staff was interviewed to estimate 
the duration of several tasks. Additionally, other data estimates were obtained through model 
calibration. Saberi and Awasthi (2019) utilize triangular distributions for many input data which 
suggests that these data are estimated from interviews. Experiments report results from only 
three replications, and no hypothesis test has been provided to validate the model. An 
optimization problem is solved with no justification for the objectives and constraints. 

From the aforementioned, the inattention to the application of the best simulation 
practices may affect the validity and reliability of the studies. It is expected to properly list the 
input data of the model as well as the probability distributions functions used to approximate 
the random variables supported by a goodness of fit statistical test. The model should be 
validated by using proper statistical tests as well as the number of replications used in the 
experiments. Whenever possible, time studies should be preferable over interviews. The 
attention to points like these is one difference between our paper and others. 

Another difference is that the current paper closes the scope on the treatment stage, 
capturing details of the operation such as the existence of unscheduled patients; patient 
absences; dropouts; scheduling; queue policies, and many others; improving the 
representativity of the model when emulating the real system. An optimization with simulation 
model is solved to study scenarios that a human would unlikely think by himself. We also build 
a friendly tool that has been used by the operation, cementing the legacy of the present work. 

3. SIMULATION MODEL 

This section describes the developed discrete-event simulation model. The modeling 
consists of firstly developing a conceptual model through an Activity Cycle Diagram (ACD), 
flowchart, and causal diagram. Next, we describe the data collection process, statistical 
treatment, and modeling of the input data; and finally, the development of the computational 
model used to carry out the experiments. 
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3.1 – Conceptual Modelling 
During the conceptual modeling, it is appropriate to map the process and understand its 

context. A radiotherapy center that works with external-beam radiation therapy is mainly 
comprised of human resources (administrative stuff, therapists, dosimetrists, medical 
physicist, technicians) and machine resources (linear accelerators, mold apparatus, computed 
axial tomography). 

 
Figure 1: Process Flow Chart of a typical radiotherapy process 

Figure 1 presents a basic flowchart with the main tasks performed by the human 
resources, where initially the patient has a consultant with the therapist to have a diagnostics 
and prescription; next a member of the administrative staff schedules a session for a 
computed axial tomography (CT) scanner that generates 3D images of the tumor and its 
neighborhood; then a technician performs the scanning. Still in this step, depending on the 
tumor (head and neck for example), before going to the CT, the technician goes to a mold 
room to produce a mask for the patient. Hereafter, a dosimetrist imports such images to draw 
the organs of risk using specific software. After that, a radiation therapist is responsible for 
prescribing the radiation dose, number of sessions, and for drawing the target areas around 
the tumor using the images previously processed by the dosimetrist. In the next step, a 
medical physicist performs the treatment planning using a specific software where it is defined 
the method to be used in the treatment, the linac configuration such as machine and table 
positions, number of radiation fields, and others parameters aiming to deliver the prescribed 
dose by the therapist. The therapist checks if the treatment plan holds all medical constraints, 
and if approved, a physicist (usually one who did not perform the treatment plan) makes a 
final check. In both verifications, if there is something wrong, the physicist performs the 
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necessary adjustments. Finally, the administrative staff can schedule the treatment sessions 
that are performed by the technicians using a linear accelerator. 

A typical performance metric of the process is the elapsed time from the patient referral 
until the first session of treatment, and sometimes this metric is referred to as ready-to-treat 
to treatment (RTTT) à la Babashov et al., 2017. It is common to split the process into two stages: 
planning and treatment, where the first refers to all steps preceding the execution of the 
treatment, and the second the treatment itself. 

Differently from the first stage, the treatment stage is repeated many times over the days 
for the same patient. The treatment is comprised of fractions, where a fraction is the base unit 
of treatment during a visit to the radiotherapy department, delivered at daily intervals. A phase 
of radiotherapy treatment comprises several treatment fractions and a single course of 
treatment is designed around a single treatment regime of one or more phases, requiring one 
or more treatment plans to be created by the therapist and physician. Note that the 
complexity of these plans can vary for the different cancer types and the characteristics of the 
patient’s disease (Morgan et al.,2016). 

Because the treatment stage is a repetitive task, where it is common to have a plan lasting 
more than 20 sessions, it usually has the largest number of employees, in this case, 
technicians. It also utilizes the linear accelerator which is the most expensive resource of 
external-beam radiation therapy. Because of the high volume of sessions, this operation must 
work with high productivity levels, otherwise it becomes a bottleneck of the whole process, 
affecting the waiting time of the patient (RTTT). These reasons make this stage particularly 
important, so it is the focus of the present work. 

During the modeling, it is also appropriate to identify what is important in the system in 
order to bring its effects to the model. The nature of the problem is summarized by the causal 
diagram in Figure 2 which helps to understand relevant variables of the process and their 
relationship with each other. 

 
Figure 2: Causal Diagram 

In Figure 2, by aspiring operational excellence, the process creates pressure for meeting 
KPIs, encouraging higher scheduling efficiency that may result in higher utilization of the 
technicians, reducing overtime, and consequently, costs. It is also possible to see, among many 
other relations, that the better the scheduling, the higher the throughput, the smaller the 
RTTT, the higher the patient satisfaction. 
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Figure 3: Activity Cycle Diagram 

Figure 3 presents the ACD of the model with the life cycle of the main entities and 
resources. The double arrows refer to the life cycle of the patient, once into the process, 
if the patient has been already scanned by the CT machine, the patient goes to 
treatment, otherwise, the patient goes for scanning. Therefore, in the perspective of the 
patient, considering the scan is performed only once and the number of treatment 
sessions is numerous, in a typical day, the patient arrives at the radiotherapy 
department, stays in the waiting room until being called by the technician, then entering 
the linac treatment room, receiving the treatment and finally leaving. Still, in Figure 3, it 
is seen in the life cycle of the technicians that this resource is shared between the 
activities “Scan”, “Treat” and “Morning Checkout”, therefore despite the fact that the CT 
is in the planning phase of the process, it has to be included in the model of the 
treatment stage. 

Figure 4 is a process flowchart that focuses on the technicians considering they are 
the ones who provide the service for the patient during the treatment sessions. The first 
activity performed by the technician at the beginning of the day is the “Morning 
Checkout” to confirm that the machine is ready for utilization. The counters r  (number 
of patients treated in the current day) and q  (number of available technicians for 
treatment) are initialized. If there are at least two technicians available, then the 
treatment session is performed with duration time t2 ; if there is only one technician, 
the session is performed with duration t1 , where t2 t1< ; otherwise the activity waits for 
the technician. Although the ideal number of technicians in the treatment room is at 
least two, there might be situations along the day where a technician leaves temporarily 
the treatment room, such as attending to a CT session, where may remain only one 
technician to perform the treatment. In this case, the technician takes longer to position 
the patient on the linac table, operate the machine, and remove the patient from the 
table. This behavior is also showed in the flowchart, where if there is a call from CT 
station, one technician goes to the CT (decrementing q ) while the remaining technicians 
perform the treatment session (if all planned patients p  have not yet been treated). 
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Figure 4: Process flow chart of treatment 

3.2 – Input data collection and analysis 

From the knowledge obtained from the conceptual modeling studies, interviews, and visits to 
the operation, it has been identified the relevant input data variables to be included in the simulation 
model, listed in Table 2 with their respective expression for the current situation of the process. Data 
were collected from the tracking software database used by the operation and also from a time study 
of 233 patients monitored from the moment of arrival to the moment of exit. Using online statistical 
tools from Miranda (2020), the raw data has been subject to a statistical treatment in order to remove 
outliers and also to confirm if the data is independent and identical distributed. A goodness of fit 
statistical test has been performed using the Input Analyzer tool from ArenaTM package to identify 
suitable distributions functions for the data. In the expression column, the words Beta, Logn, Exp, N 
and Gamm refer to the probability distribution respectively: beta, lognormal, exponential, normal, 
and gamma. The terms within the parenthesis refer to the parameters of the distributions. 

Statistical analysis showed possible to group the duration of treatment sessions for 
different types of tumors. Considering we have identified no reason for significant changes in 
the proportion of tumor types, for the sake of simplicity the duration of treatment is not 
breakdown by tumor types. On the other side, we found it necessary to distinguish this time 
for the case where there are one or more technicians operating the linac machine because 
these occurrences are influenced by decision variables of the model such as the technicians 
scheduling and CT. 

The dropouts refer to the patients that go the session and after waiting too long decide 
to go back home. Although rare in the present scenario, it should be part of the model so it 
still runs valid results for experiments using extremes values for some variables. The used 
expression is: if the waiting time is greater than 60 minutes, then there is 20% chance of 
dropout; if it is greater than 90 minutes, 60% chance. 
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Table 2: Input data 

Input Expression Measure Unit 

Duration of Treatment session (T2) (  ≥ 2 tech.) ( )* . , .5 12 BETA 1 02 2 69+  minutes 

Duration of Treatment session (T1) (1 tech.) ( ) . , .5 LOGN 6 18 4 24+  minutes 

Number of scheduled patients (Q) ( )( ). , .round N 92 1 2 65  units 

Time between unscheduled patients (TBUP) ( ).EXP 3 9  units 

% of absence %4  units 
Dropouts  Conditional Probability  units 
Process working time (WT) 912  minutes 
Shift working time 288  minutes 
Technicians start time (scheduling) Schedule1  minutes 
Lunch time 48  minutes 

Duration of Morning Checkout (DMC) ( ). , .N 14 9 2 1  minutes 

Duration of CT session (DCT) ( ). , .N 12 1 3 2  minutes 

CT working time [ ]: : ; : :8 00 12 00 14 00 17 00− −  HH:MM 

Time between CT session calls (TBCT) ( ).EXP 1 5  hours 

Process interruptions (uptime) ( ).EXP 2 5  hours 

Process interruptions (downtime) ( ). , .N 8 2 2 9  minutes 

Slot length (SL) .10 0  minutes 

Number of slots with duplicated schedules ( )( ). , .round GAMM 5 78 0 964  units 

Arrival time deviation from scheduled time ( ATD ) ( )  . , .20 GAMM 19 7 2 3− +  minutes 

The scheduling refers to the start time of the technicians. Because it is not possible to 
attend the demand in one technician shift of 288 minutes, the technicians have to be spread 
along the day. Table 3 provides the current scheduling. 

Table 3: Scheduling 

Technician ID Start time Lunch time End time 

ID1 06:30 - 11:18 
ID2 06:54 - 11:42 
ID3 08:06 - 12:54 
ID4 10:30 12:06 16:06 
ID5 12:06 - 16:54 
ID6 12:54 - 17:42 
ID7 14:06 - 18:54 
ID8 16:54 - 21:42 
ID9 16:54 - 21:42 

There are also many situations where the operation is paused such as machine problems, 
doubts where the technicians consult the physicists, room cleaning, hospital events, etc. We 
found it possible to group all these interruptions by generating one event every ( ).EXP 2 5  hours 
of duration ( ). , .N 8 2 2 9  minutes. 
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3.3 – Computational model 

The computational model is presented in Figure 5 and Figure 6. It was implemented using 
the commercial simulation software ArenaTM, on a desktop computer with two IntelTM Core 
processors i7TM3, 1GHz with 8GB of RAM and WindowsTM 10 operating system. The model 
simulates workday events of the treatment stage, where the patients are the entities that flow 
through the system, and the technicians, linac and CT are the resources. 

For the sake of organization, we have labeled the modules of the model by row and 
column to facilitate references in Figure 5. The main attributes of the entity “patient” are: 
arrival time, start time of treatment, scheduled time, treatment time, patient delay, process 
delay, process anticipation. 

The main flow starts at module R3C1 that generates Q  scheduled patients to be treated 
at the day. Next, in R3C2, it is assigned the scheduled time of the patients. In R3C3, if the 
patient is absent (4% probability), it leaves the system (R4C5), otherwise it moves on to R3C4 
that imposes a delay to the entity. The entity leaves this module at the time equivalent to the 
arrival time of the patient in the waiting room of the facility. Note that 

( ) ( ) ( )         ,Scheduled Time ST ArrivalTime AT Deviation ATD− =  therefore the delay in R3C4 is –AT  ST   ATD= , 
where ATD  is the random variable listed in Table 2. This is important because the patient can 
arrive before or after the scheduled time impacting the queue order when called by the 
technicians. That is the reason we don’t simply use the time between arrivals but the deviation 
from the scheduled time. Following, the arrival time is captured in R3C5. Next, R3C6 seizes the 
resources “technicians” and “linac”, with queue policy of type “Lowest Attribute Value” for the 
attribute “arrival time”. By doing so, the patients that already arrived in the waiting room are 
ordered by scheduled time, allowing to properly calculate the waiting time of the patient. 

 
Figure 5: Computational model 

In R5C1, if the patient is not late, it goes to R5C2 where the attribute “process delay” 
is computed by the expression: ( ) ( ) ( ) ( )( )*( ) *TNOW ST TNOW ST 0 0 TNOW ST 0− − > + − ≤  where TNOW  

refers to the simulation time the entity entered into the module. Otherwise, it goes to 
R6C3, where the attribute “patient delay” is computed by the expression: AT ST− . Module 
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R5C2 assigns value TNOW  for the attribute “start time of treatment” and the attribute 
“process anticipation” is updated with value: ( ) ( ) ( ) ( )( )*(   ) * .ST TNOW ST TNOW 0 0 ST TNOW 0− − > + − ≤  

In module R6C4, if the entity refers to a patient dropout, it goes to R7C5 (read & write 
module) that writes into an Excel file statistics of the entity and after that the entity leaves 
the system. Otherwise, it goes to R5C4 (delay-release module) that delays the resources 
“technicians” and “linac” by T1  or T 2  minutes and releases them. Module R5C5 writes into 
an Excel file attributes values of the entity, R6C5 updates auxiliary variables such as the 
time of the last patient, and finally, the entity leaves the system. 

Another flow is started in R2C1 that generates entities related to the patients 
scheduled in slots already busy. This is a practice of the operation where, for example, 
instead of reducing the slot length to have more slots for scheduling, they double schedule 
one slot a certain number of slots. R2C2 assigns the schedule time picking a slot using a 
uniform distribution [ ],U a b  where a  is the completion time of the morning checkout and 
b  is the planned process closing time. There is also a flow starting at R2C3 regarding the 
unscheduled patients that creates an entity every TBUP  hours, and R2C4 assigns the 
schedule time (value TNOW ) then moving to the main flow. The last flow models the 
dropout, where R1C3 creates an entity every 1 minute that triggers the “search & remove” 
module R1C4 that checks the linac queue according to the criteria already explained. If 
any entity (patient) in the linac queue meets such criteria, the entity is removed from the 
queue and goes to R2C6 where it receives an attribute dropout true= , it is separated from the 
flow in R6C4 and its statistics collected in R7C5. 

There are other separated modules to create CT call, the activity morning checkout seizing 
“linac” an “technician”, a VBA module with an algorithm to initialize variables and replicate the 
logic used by the operation to assign lunch time for the technicians. 

4 – EXPERIMENTS AND RESULTS 

4.1 – Preliminary experiments and validation 

Firstly, preliminary experiments were executed to determine the appropriate 
number of replications to be used in further experiments. The system is said terminal, 
where each replication of the model emulates one workday of the operation, with a given 
start time, including the events and statistics under transient regime. The number of 
replications has been calculated based on Law et al. (2000) by a rearrange of the 
confidence interval formula. The results for 10 initial replications, 95% confidence level, 
for the metrics “exit time of the last patient” ( ET ) and “process delay” (PD), determined 
24 replications to be used in the following experiments. 

In order to validate the model, we have performed one experiment using the 
current values of input data of the operation to compare the model output with the real 
system output for the responses ET  and PD . We performed a t-test assuming equal 
variances to compare the means (after Levene’s test), with 95% confidence level. Table 4 
and Figure 6 shows that there are no significant statistical differences for both responses 
evidencing that the model behavior reflects the real world. 

Table 4: Comparison with the real system 

 ET  (model) ET  (real system) PD (model) PD (real system) 

Mean  871.55 869.42 11.47 12.77 
 Standard Deviation  16.84 18.65 6.51 6.93 

p value−  (variance) 0.183 0.540 
p value−  (mean) 0.810 0.535 
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Figure 6: Interval plot for means 

4.2 – Factorial experiments 
In this section, a factorial experiment is conducted with two responses ( ET  and PD ) and 

three factors: number of scheduled patients ( Q ), slot length ( SL ) and slot duplication ( D ); with 
factor levels [ ], , ,80 90 100 110 , [ ]. , . , . , 8 5 9 0 9 5 10  and [ ], true false  respectively; totaling 32 experiments 
which results are given in the Appendix section, so here we focus on the analysis of the results. 

Figures 7 to 10 show the main effects plot and interactions plot for SD  false  and true , where 
each dot is the mean result for its respective case. In Figure 7, we see that ET  increases 
substantially when Q  increases from 80  to 110 , and that this increase is less significant for changes 
in SL  and D . Regarding the interactions (Figure 8), the change in ET  is similar for different levels 
of SL . For moves in SD , the effect of changes in Q  is similar within the range 80 Q 100≤ ≤  and 
significantly higher for Q 110= ; and the effects of changes in SL  is small for D true= . 

 
Figure 7: Main Effects Plot for ET 

  
Figure 8: Interactions Plot for ET 
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With respect to the response PD , in Figure 9, the patients have to wait much more when 
Q  moves above 90 and much less when SL  is increased; for changes in D , there is a slight 
difference. Regarding the interactions (Figure 10), the changes in PD , when Q  moves to higher 
levels, are different depending on the SL  value; and there are also differences for changes in 
D . Figure 11 offers another visualization of how changes in the factors SL  and D  affect the 
responses ET  and PD , for D true= . It is also seen that changes in the factors have opposite 
effects in the responses. 

 
Figure 9: Main Effects Plot for PD 

  
Figure 10: Interactions Plot for PD 

 
Figure 11: Surface Plot; Slot Duplication = true 

Elaborating on the results, Table 5 provides multivariate regression equations that makes 
possible for the operation to predict the responses for any values of the factors within the tested 
ranges. A Backward elimination procedure with α  (significance level) equal to .0 1  has been applied 
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to remove not significant terms. The high values of the adjusted and predicted 2R  indicate that the 
predictors SL  and D  explain most of the variance in the responses ET  and PD ; and because the 
adjusted and predicted 2R  are close, the model does not appear to overfit and has an adequate 
predictive ability. No issues have been found regarding the residuals. 

Table 5: Multivariate Regression 

D Regression Equation ( )2R adj  ( )2R pred  

False  
    .    .    .  *ET 1688 14 56 Q 176 5 SL 2 543Q SL= − − +  98.93% 98.25% 

    .    .    .    .  *2PD 57 1 30Q 19 7 SL 0 01563Q 0 441Q SL=− + + + −  93.75% 86.26% 

True  
    .    .    .    .  *2ET 2212 43 01Q 148 7 SL 0 1303Q 1 346 Q SL=− + + − −  99.03% 98.83% 

    .    .    .    .  *2PD 963 13 69Q 67 9 SL 0 04800Q 0 614Q SL= − − + +  94.51% 92.40% 

Considering all these analyses, in practical terms, it is useful to provide the operation a mean of 
selecting the best configuration in terms of SL  and D , for different scenarios of Q . Figure 12 aims to 
make it possible. Because of the different order of magnitudes of the responses, the values for the 
results of the 32 tested scenarios have been normalized to a standard scale from 0 to 100 equivalent 
to the minimum and maximum values respectively, using linear interpolation. Remind that, also in 
this scale, the lower the values of the responses, the better. Because of the conflicting nature of the 
responses, we have weighted both of them, with 30% for ET  and 70% for PD  after alignment with 
the operation manager. By doing so, for example, if the operation plans to work with a volume of 
patients close to 110, by looking at Figure 12, for Q 110= , it is seen the configuration with SL 10=  and 
D false=  is the one that provides the best performance. 

 
Figure 12: Performance for different scenarios 

4.3 – Space search experiments 
The previous experiments have considered three decision variables ( , Q SL  and D ). 

Another decision variable that can impact the performance of the operation is the scheduling 
of the technicians, i.e., the entrance time of each of them. Considering there are 9 technicians 
working in the operation, that represents additional 9 decision variables. For this case, the 
number of possible combinations among the variables is too high, characterizing a 
combinatorial problem, where optimization techniques are required to select the best values 
for these variables. 

By doing so, the optimization model consists of a problem which objective (Equation 1 ) 
is to maximize the throughput ( Q ) subjected to the constraints described in Equations 2  to 6 ; 
where PD  must not exceed 15 minutes; the number in queue NQ  (patients in the waiting 
room) must not exceed 8 patients; number of dropouts ND  must not exceed 2 patients; and 
the exit time ET  must not exceed 927 minutes which means up to 15 minutes of overtime, 
considering 912 minutes of process working time. 
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 MaxQ  (1) 

. .s t  (2) 

PD 15≤  (3) 

NQ 8≤  (4) 

ND 2≤  (5) 

ET 927≤  (6) 

The decision variables are described in Table 6, where iST  refers to the start time of the 
technician i  where { }, , ,i 1 2 9∈ … . 

Table 6: Decision variables for the optimization model 

Variable Type Lower Bound Upper Bound Increment 

SL  discrete 8.0 10.0 0.25 
D  Boolean false true - 

iST  discrete 0 624 24 

The problem has been solved using the solver OptQuestTM that is a module of the 
simulation software ArenaTM combining the metaheuristics of Tabu Search, Neural Networks, 
and Scatter Search into a single search heuristic. For each run of the optimization, 24 replicas 
of the simulation model are executed and the average values among the replications are 
calculated to check the constraints. The results are showed in Table 7 where, in simulation 
time, minutes 0 and 912 are equivalent to the operation starting time 6:30 and closing time 
21:42, respectively. It is seen that when compared with the original values used by the 
operation, some technicians are scheduled to arrive earlier and the slot length changed from 
10 to 9 minutes. The output Q and its 95% confidence interval are showed at the bottom of 
the table. 

Table 7: Opt. Results 

Dec. Variables Original Opt. 
1ST  0 0 
2ST  24 24 
3ST  96 96 
4ST  240 192 
5ST  336 312 
6ST  384 360 
7ST  456 456 
8ST  624 600 
9ST  624 624 

SL  10 9 
D  true true 
Q 98.4 107.1 
% 95 CI  [95.5;101.3] [104.2;110.0] 

4.4 – Space search experiments for two linacs 

The operation is acquiring a second linear accelerator, and the manager has expressed 
his concern about the configuration of the operation, including the number and scheduling of 
technicians. We have modified the model described in Section 3 to operate with two machines, 
where each machine has its own scheduled patients. It has been decided to have both 
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machines in the same model instead of individual models for each machine because there is 
a relationship between the machines. For example, when a technician is called to a CT session, 
the technician of the linac with the lowest number of patients in the queue is the one to attend 
the session. 

The optimization model is described in Equations 7-12, where { },j 1 2∈  is the linac index. 
The decision variables are: , j jSL D  and iST  where: { }, , ,i 1 2 I∈ … , I  is the number of technicians. 

The problem has been solved for , , .I 9 10 14= …  

 1 2MaxQ Q+  (7) 

. .s t   (8) 

{ }, ,   jPD 15 j 1 2≤ ∀ ∈   (9) 

{ }, ,jNQ 8 j 1 2≤ ∀ ∈  (10) 

{ }, ,jND 2 j 1 2≤ ∀ ∈  (11) 

( )max iET ST 15≤ +  (12) 

In Table 8, it is possible to see how the throughput ( 1 2Q Q+ ) increases with the number of 
technicians. There are a few differences in the schedule for different values of I. It is observed 
that it is possible to schedule 196 patients using 14 technicians which represents a substantial 
productivity increase when compared with the current operation scenario with 92 patients using 
9 technicians. It supports the usefulness of the optimization model that provides more flexibility 
in terms of configuration to better adjust with the stochastic behavior of the operation. 

Table 8: Opt. Results for two linacs 

Dec. 
Variables 

I=9 I=10 I=11 I=12 I=13 I=14 

1ST  0 0 0 0 0 0 
2ST  24 24 24 24 24 24 
3ST  192 168 192 192 264 264 
4ST  312 312 360 360 312 312 
5ST  336 360 504 504 528 528 
6ST  0 0 528 528 600 600 
7ST  24 24 0 0 624 624 
8ST  240 192 24 24 0 0 
9ST  288 312 168 216 24 24 

10ST  - 360 312 360 216 240 
11ST  - - 360 528 360 288 
12ST  - - - 528 528 528 
13ST  - - - - 528 600 
14ST  - - - - - 600 
1SL  9 8.5 8.5 9 8.5 9 
2SL  9 9 9 9.5 9 9 
1D  1 0 0 1 0 1 
2D  1 1 1 1 1 1 

1 2Q Q+  133.1 140.2 159.1 178.3 188.2 196.3 
% 95 CI  [129.1;137.1] [136.1;144.3] [154.4;163.8] [173.2;183.4] [182.2;193.9] [190.4;202.2] 

4.5 – Developed tool 

The operation is situated in the hospital Hélio Angotti, city of Uberaba, state of Minas 
Gerais, Brazil, where patients from an area covering more than 30 cities are treated, as 
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illustrated in Figure 13. Nowadays, the Hospital has about 45 physicians and 433 employees, 
contributing to the social impact of the region by offering outpatient services, diagnostic 
imaging (installed capacity to perform more than 7,000 tests / month), nuclear medicine (about 
800 tests / month), chemotherapy (approximately 400 consultations / month) and radiation 
therapy (over 1800 sessions per month). 

 
Fig 13: Geographical region covered by the hospital 

Building on all the analyses from the experiments, we have devised a simulation tool with 
a friendly interface that can be used by the manager to simulate the operation for any values 
of , , Q SL D  and technicians scheduling, for one or two linacs. By doing so, the operation is free 
to make its own studies, gathering information to support decision making in everyday 
business. 

 
Figure 14: Tool interface 
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The interface is an Excel file as illustrated in Figure 14, where the manager can set up 
values for the decision variables. The user clicks on a button, and a VBA macro is executed in 
the background, therefore not requiring simulation knowledge from the user. The macro calls 
the Arena model, execute the simulation and writes the statistics into a .csv file, finally it reads 
the .csv to compute a summary of the relevant statistics, writing the summary in another tab 
of the initial Excel file (Figure 15). The results table is comprised of many statistics such as % 
of patients waiting up till 30 minutes, allowing the operation to analyze the pros and cons of 
the simulated scenario. 

 
Figure 15: Tool results 

5 – CONCLUDING REMARKS AND FURTHER RESEARCH 
We presented an application of a discrete-event simulation model in a real radiotherapy 

process. By concentrating on the treatment stage, we were able to include many details of the 
operation in the model, increasing its capacity to emulate the real operation. Our experiments 
initially studied a suitable number of replications to have reliable results in further 
experiments. In order to also have valid results, a second experiment compared the real-world 
results with the simulation results for two critical responses (exit time of the last patient and 
process delay). After confirming that the model is able to provide valid and reliable results, we 
executed a set of experiments to explore a number of possibilities to analyze, understand and 
identify improvements, which returned some interesting findings. 

In Section 4, we performed factorial experiments testing different values for the number 
of scheduled patients, slot length and duplication admission; identifying the main effects and 
interactions for these variables. We also found regressions equations to estimate results for 
any values within the tested range; additionally, the graph in Figure 12 allows the operation to 
find the best configuration for different values of Q . 

Recognizing the combinatorial nature of the problem when including the scheduling of 
the technicians, we performed space search experiments which results suggested changes in 
the original setup. Going further, still in Section 4, considering the operation is acquiring 
another linac, we provided results of optimization models with two linacs for different 
numbers of technicians, so the operation can plan its ramp up accordingly. The results also 
showed a substantial productivity increase when using the solution from the optimization 
model. Finally, we devised a friendly tool to allow the operation to run its own simulation 
studies. 

In a future study, we plan to include in the simulation model other steps of the 
radiotherapy process in order to complement our findings. 
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APPENDIX 
Table A1 provides the results for the 32 experiments mentioned in Section 4.2. 

Table A1: Results of Factorial Experiments 

StdOrder RunOrder Q SL D ET PD 
17 1 100 8.5 true 895.2 22 

2 2 80 8.5 false 743.5 15.1 

5 3 80 9.5 true 782.1 2.5 

8 4 80 10 false 804.5 -13.2 

21 5 100 9.5 true 924.5 12.4 

22 6 100 9.5 false 960.4 -2.8 

27 7 110 9 true 949.5 34.5 

7 8 80 10 true 804.5 -13.2 

14 9 90 9.5 false 856.8 -5.3 

26 10 110 8.5 false 949.6 34.3 

18 11 100 8.5 false 895.2 22 

9 12 90 8.5 true 833.8 15.3 

31 13 110 10 true 947.7 32.4 

3 14 80 9 true 769.5 3.3 

29 15 110 9.5 true 940.6 36.5 

13 16 90 9.5 true 856.8 -5.3 

19 17 100 9 true 927.1 12.3 

20 18 100 9 false 922.6 5.3 

23 19 100 10 true 928.1 15.4 

12 20 90 9 false 851.7 4.8 

10 21 90 8.5 false 833.8 15.3 

32 22 110 10 false 1116.8 -11.2 

6 23 80 9.5 false 782.1 2.5 

11 24 90 9 true 851.7 4.8 

4 25 80 9 false 769.5 3.3 

25 26 110 8.5 true 949.6 34.3 

28 27 110 9 false 1029.9 10.4 

1 28 80 8.5 true 743.5 15.1 

15 29 90 10 true 878.3 -8.3 

16 30 90 10 false 890.4 -11.7 

24 31 100 10 false 1008.7 -14.7 

30 32 110 9.5 false 1079.9 -3.3 
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